1、双基限时练(十五)1在各项都为正数的等比数列an中,a13,前3项和为21,则a3a4a5()A33B72C84 D189解析a13,a1a2a3a1(1qq2)21,1qq27.解得q2,或q3(舍去)a3a1q212.a3a4a5a3(1qq2)12784.答案C2在等比数列an中,假如a1a240,a3a460,那么a5a6()A80 B90C95 D100解析a1a2a1(1q)40,a3a4a3(1q)60,q2.a5a6q2(a3a4)6090.答案B3已知数列an的前n项和Snan1(a是不为零的常数),则数列an()A肯定是等差数列B肯定是等比数列C或者是等差数列,或者是等比数
2、列D既非等差数列,也非等比数列解析由Snan1,知当a1时,Sn0,此时an为等差数列(an0)当a1时,an为等比数列答案C4数列1,12,1222,12222n1,前n项和等于()A2n1n B2n1n2C2nn D2n解析解法1:当a11,a23,a37,an2n1,Sna1a2an(21)(221)(231)(2n1)222232nnn2n12n.解法2:取n2,则S24,排解A,C,取n3,则S311,排解D.答案B5已知数列a,a(1a),a(1a)2,是等比数列,则实数a的取值范围是()Aa1 Ba0或a1Ca0 Da0且a1解析由等比数列的定义,知a0,且a1.答案D6等比数列
3、an的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an的公比为_解析依题意,有4S2S13S3,即4(a1a2)a13(a1a2a3),即a23a3,q.答案7若an是等比数列,下列数列中是等比数列的序号为_a;a2n;lg|an|答案8求数列,的前n项和解Sn(123n)1.9等差数列an中,a410,且a3,a6,a10成等比数列,求数列an前20项的和S20.解设数列an的公差为d,则a3a4d10d,a6a42d102d,a10a46d106d,由a3,a6,a10成等比数列,得a3a10a,即(10d)(106d)(102d)2,解得d0,或d1.当d0时,S2020a42
4、00.当d1时,a1a43d7.于是S2020a1d207190330.10设an是公比为正数的等比数列,a12,a3a24.(1)求an的通项公式;(2)设bn是首项为1,公差为2的等差数列,求数列anbn的前n项和Sn.解(1)设an的公比为q,由a12,a3a24,得2q22q4,解得q2或q1(舍去),q2.因此an的通项公式为an2n.(2)由题意Snn122n1n22.11已知公差不为0的等差数列an的前4项的和为20,且a1,a2,a4成等比数列(1)求数列an的通项公式;(2)设bnn2an,求数列bn的前n项和,并推断是否存在n(nN*),使得Sn1440成立?若存在,求出全部n的解;若不存在,请说明理由解(1)设an的公差为d,依题意得即解得an2n.(2)bnn22nn4n,Sn14242343(n1)4n1n4n,4Sn142243(n1)4nn4n1,两式相减,得3Sn442434nn4n1Sn4n1.令4n11440,化简得(3n1)4n3239.左边为偶数,右边为奇数,方程无解即不存在nN*,使Sn1440成立