1、开卷速查(二十九)等差数列及其前n项和A级基础巩固练12022福建等差数列an的前n项和为Sn,若a12,S312,则a6等于()A8B10C12D.14解析:设等差数列an的公差为d,则S33a13d,所以12323d,解得d2,所以a6a15d25212,故选C.答案:C2设Sn为等差数列an的前n项和,S84a3,a72,则a9()A6B.4C2D.2解析:由S84a3知:a1a8a3,a8a3a12da7d,所以a7d2.所以a9a72d246.答案:A3下面是关于公差d0的等差数列an的四个命题:p1:数列an是递增数列;p2:数列nan是递增数列;p3:数列是递增数列;p4:数列a
2、n3nd是递增数列其中的真命题为()Ap1,p2B.p3,p4Cp2,p3D.p1,p4解析:如数列为2,1,0,1,则1a12a2,故p2是假命题;如数列为1,2,3,则1,故p3是假命题故选D项答案:D4已知等差数列an中,a7a916,S11,则a12的值是()A15B.30C31D.64解析:由题意可知2a8a7a916a88,S1111a6,a6,则d,所以a12a84d15,故选A.答案:A5在等差数列an中,a9a126,则数列an的前11项和S11()A24B.48C66D.132解析:由a9a126,得2a9a1212.由等差数列的性质得,a6a12a1212,a612,S1
3、1132,故选D.答案:D6在递减等差数列an中,若a1a50,则Sn取最大值时n等于()A2B.3C4D.2或3解析:a1a52a30,a30,d0,an的第一项和其次项为正值,从第四项开头为负值,故Sn取最大值时n等于2或3,选D.答案:D7设等差数列an的前n项和为Sn,若a13,ak1,Sk12,则正整数k_.解析:由Sk1Skak112,又Sk1,解得k13.答案:138设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是_解析:方法一:S99a136d,又依据线性规划学问,得3S921.方法二:S99a136dx(a12d)y(a15d),由待定系数法得x3,y
4、6.由于33a33,06a618,两式相加即得3S921.方法三:a1a2a3a4a55a3,a6a7a8a92a62a9,而a3a92a6,所以S93a36a6,又1a31,0a63,依据线性规划学问,得3S921.答案:(3,21)9等差数列an的通项公式为an2n8,下列四个命题1:数列an是递增数列;2:数列nan是递增数列;3:数列是递增数列;4:数列a是递增数列其中为真命题的是_解析:由公差d20,知数列an是递增数列,所以1为真命题;由于nann(2n8),对称轴为n2,则数列nan先减后增,所以2为假命题;由于2,故数列是递增数列,所以3为真命题;由于a(2n8)2,对称轴为n
5、4,则数列a先减后增,所以4为假命题答案:1,310已知等差数列an的前n项和Sn满足S30,S55.(1)求an的通项公式;(2)求数列的前n项和解析:(1)设an的公差为d,则Snna1d.由已知可得解得a11,d1.故an的通项公式为an2n.(2)由(1)知,从而数列的前n项和为.B级力气提升练11在等差数列an中,若a2a4a6a8a1080,则a7a8的值为()A4B.6C8D.10解析:a2a4a6a8a105a680,a616.a7a88.答案:C12数列an的首项为3,bn为等差数列,且bnan1an(nN*),若b32,b1012,则a8()A0B.3C8D.11解析:设b
6、n的公差为d,b10b37d12(2)14,d2.b32,b1b32d246.b1b2b77b1d7(6)2120.又b1b2b7(a2a1)(a3a2)(a8a7)a8a1a830,a83.故选B.答案:B132021河北邢台市摸底考试已知正项等差数列an的前n项和为Sn,且满足a1a5a,S763.(1)求数列an的通项an;(2)若数列bn满足b1a1且bn1bnan1,求数列的前n项和Tn.解析:(1)解法一设正项等差数列an的首项为a1,公差为d,且an0,则,解得,an2n1.解法二an是等差数列且a1a5a,2a3a,又an0,a37.S77a463,a49,da4a32,ana
7、3(n3)d2n1.(2)bn1bnan1且an2n1,bn1bn2n3,当n2时,bn(bnbn1)(bn1bn2)(b2b1)b1(2n1)(2n1)53n(n2)当n1时,b13满足上式,bnn(n2),Tn.14已知等差数列an的前n项和为Sn,S749,a4和a8的等差中项为11.(1)求an及Sn;(2)证明:当n2时,有.解析:(1)方法一:设等差数列an的公差为d,S749,a4a822,解得a11,d2,所以an2n1,Snn2.方法二:S77a449,a47.a4a822,a815.d2,a1a43d1.an2n1,Snn2.(2)证法一:由(1)知,Snn2,nN*.当n2时,1,原不等式成立当n3时,n2n(n1),.111.证法二:由(1)知,Snn2,nN*.当n2时,n2(n1)(n1),.111.