收藏 分销(赏)

常微分方程考研讲义第三章-一阶微分方程解的存在定理教学文案.doc

上传人:快乐****生活 文档编号:3793705 上传时间:2024-07-18 格式:DOC 页数:25 大小:1.94MB
下载 相关 举报
常微分方程考研讲义第三章-一阶微分方程解的存在定理教学文案.doc_第1页
第1页 / 共25页
常微分方程考研讲义第三章-一阶微分方程解的存在定理教学文案.doc_第2页
第2页 / 共25页
常微分方程考研讲义第三章-一阶微分方程解的存在定理教学文案.doc_第3页
第3页 / 共25页
常微分方程考研讲义第三章-一阶微分方程解的存在定理教学文案.doc_第4页
第4页 / 共25页
常微分方程考研讲义第三章-一阶微分方程解的存在定理教学文案.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、常微分方程考研讲义第三章 一阶微分方程解的存在定理精品文档第三章 一阶微分方程解的存在定理教学目标1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。2. 了解解的延拓定理及延拓条件。3. 理解解对初值的连续性、可微性定理的条件和结论。教学重难点 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。教学方法 讲授,实践。教学时间 12学时教学内容 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。考核目标 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。2.熟练近似解的误

2、差估计式,解对初值的连续性及可微性公式。3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分

3、方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。例如方程 过点的解就是不唯一,易知是方程过的解,此外,容易验证,或更一般地,函数 都是方程过点而且定义在区间上的解,其中是满足的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。1存在性与唯一性定理:(1)显式一阶微分方程

4、(3.1)这里是在矩形域: (3.2)上连续。 定理1:如果函数满足以下条件:1)在上连续:2)在上关于变量满足李普希兹(Lipschitz)条件,即存在常数,使对于上任何一对点,均有不等式成立,则方程(3.1)存在唯一的解,在区间上连续,而且满足初始条件 (3.3)其中,称为Lipschitz常数.思路:1) 求解初值问题(3.1)的解等价于积分方程 的连续解。2) 构造近似解函数列 任取一个连续函数,使得,替代上述积分方程右端的,得到 如果,那么是积分方程的解,否则,又用替代积分方程右端的,得到 如果,那么是积分方程的解,否则,继续进行,得到 (3.4)于是得到函数序列.3) 函数序列在区

5、间上一致收敛于,即 存在,对(3.4)取极限,得到 即.4) 是积分方程在上的连续解.这种一步一步求出方程解的方法逐步逼近法.在定理的假设条件下,分五个命题来证明定理. 为了讨论方便,只考虑区间,对于区间的讨论完全类似.命题1 设是方程(3.1)定义于区间上,满足初始条件 (3.3)的解,则是积分方程 (3.5)的定义于上的连续解.反之亦然.证明 因为是方程(3.1)满足的解,于是有 两边取到的积分得到 即有 所以是积分方程定义在区间上的连续解.反之,如果是积分方程(3.5)上的连续解,则 (3.6)由于在上连续,从而连续,两边对求导,可得 而且 ,故是方程(3.1)定义在区间上,且满足初始条

6、件的解.构造Picard的逐次逼近函数序列. (3.7)命题2 对于所有的,(3.6)中的函数在上有定义,连续且满足不等式 (3.8)证明 用数学归纳法证明 当时,显然在上有定义、连续且有 即命题成立. 假设命题2成立,也就是在上有定义、连续且满足不等式 当时, 由于在上连续,从而在上连续,于是得知在上有定义、连续,而且有 即命题2对时也成立.由数学归纳法知对所有的均成立.命题3 函数序列在上是一致收敛的.记,证明 构造函数项级数 (3.9)它的部分和为 于是的一致收敛性与级数(3.9)的一致收敛性等价. 为此,对级数(3.9)的通项进行估计. (3.10)由Lipschitz条件得知设对于正

7、整数,有不等式 成立,则由Lipschitz条件得知,当时,有 于是由数学归纳法可知, 对所有正整数,有 (3.11)由正项级数 的收敛性,利用Weierstrass判别法,级数(3.9)在上一致收敛.因而序列在上一致收敛. 设,则也在上连续,且 命题4 是积分方程(3.5)的定义在上的连续解.证明 由Lipschitz条件 以及在上一致收敛于,可知在上一致收敛于.因此 即 故是积分方程(3.5)的定义在上的连续解.命题5 设是积分方程(3.5)的定义在上的一个连续解,则,.证明 设,则是定义在的非负连续函数,由于 而且满足Lipschitz条件,可得 令,则是的连续可微函数,且,即,于是在上

8、, 故,即,命题得证.对定理说明几点:(1)存在唯一性定理中的几何意义.在矩形域中,故方程过的积分曲线的斜率必介于与之间,过点分别作斜率为与的直线.当时,即,(如图(a)所示),解在上有定义;当时,即,(如图(b)所示),不能保证解在上有定义,它有可能在区间内就跑到矩形外去,只有当才能保证解在内,故要求解的存在范围是. (2)、 由于李普希兹条件的检验是比较费事的,而我们能够用一个较强的,但却易于验证的条件来代替他,即如果函数在矩形域上关于的偏导数存在并有界,即,则李普希兹条件条件成立. 事实上 这里. 如果在上连续,它在上当然满足李普希兹条件.但是,满足李普希兹条件的函数不一定有偏导数存在.

9、例如函数在任何区域都满足李普希兹条件,但它在处没有导数. (3)、设方程(3.1)是线性的,即方程为 易知,当在区间上连续时,定理1的条件就能满足,且对任一初值所确定的解在整个区间上有定义、连续. 实际上,对于一般方程(3.1),由初值所确定的解只能定义在上,是因为在构造逐步逼近函数序列时,要求它不越出矩形域,此时,右端函数对没有任何限制,只要取. (4)、Lipschitz条件 是保证初值问题解惟一的充分条件,而非必要条件. 例如 试证方程 经过平面上任一点的解都是唯一的. 证明 时, ,在上连续, 也在上连续,因此对轴外的任一点,方程满足的解都是唯一存在的.又由 可得方程的通解为 ,其中为

10、上半平面的通解, 为下半平面的通解,它们不可能与相交.注意到是方程的解,因此对轴上的任一点,只有通过,从而保证平面上任一点的解都是唯一的. 但是 因为,故不可能存在,使得 所以方程右端函数在的任何邻域并不满足Lipschitz条件. 此题说明Lipschitz条件 是保证初值问题解惟一的充分条件,而非必要条件. 2)考虑一阶隐方程 (3.12)由隐函数存在定理,若在的某一邻域内连续且,而,则必可把唯一地表为的函数 (3.13)并且于的某一邻域连续,且满足如果关于所有变元存在连续的偏导数,则对也存在连续的偏导数,并且 (3.14)显然它是有界的,由定理1可知,方程(3.13)满足初始条件的解存在

11、且唯一.从而得到下面的定理.定理2 如果在点的某一邻域中:) 关于所有变元连续,且存在连续的偏导数;)则方程(3.12)存在唯一的解 (为足够小的正数)满足初始条件 (3.15)1、 近似计算和误差估计求方程近似解的方法Picard的逐次逼近法 对方程的第次近似解和真正解在内的误差估计式 (3.16)此式可用数学归纳法证明. 设有不等式 成立,则 例1 讨论初值问题 , 解的存在唯一性区间,并求在此区间上与真正解的误差不超过0.05的近似解,其中, .解 ,由于,根据误差估计式(3.16) 可知.于是 就是所求的近似解,在区间上,这个解与真正解得误差不超过0.05.2 解的延拓上节我们学习了解

12、的存在唯一性定理,当的右端函数在上满足解的存在性唯一性条件时,初值问题的解在上存在且唯一. 但是,这个定理的结果是局部的,也就是说解的存在区间是很小的. 可能随着的存在区域的增大,而能肯定的解得存在区间反而缩小。例如,上一节的例1,当定义区域变为时,解的范围缩小为. 在实际引用中,我们也希望解的存在区间能尽量扩大,下面讨论解的延展概念,尽量扩大解的存在区间,把解的存在唯一性定理的结果由局部的变成大范围的.1、饱和解及饱和区间定义1 对定义在平面区域上的微分方程 (3.1)设是方程(3.1)定义在区间上的一个解,如果方程(3.1)还有一个定义在区间上的另一解,且满足 (1) ;但是 (2)当时,

13、则称是可延拓的,并称是在上的延拓.否则如果不存在满足上述条件的解,则称是方程(3.1)的不可延拓解或饱和解,此时把不可延拓解的区间称为一个饱和区间.2、局部李普希兹条件定义2 若函数在区域内连续,且对内每一点,都存在以点为中心,完全含在内的闭矩形域,使得在上关于满足李普希兹条件(对于不同的点,闭矩形域的大小和李普希兹常数可能不同),则称在上关于满足局部李普希兹条件.定理3 (延拓定理)如果方程的右端函数在(有界或无界)区域上连续,且在关于满足局部李普希兹条件,则对任意一点,方程以为初值的解均可以向左右延展,直到点任意接近区域的边界.以向增大的一方来说,如果只能延拓到区间上,则当时,趋于区域的边

14、界。证明 ,由解的存在唯一性定理,初值问题 (1)存在唯一的解,解的存在唯一区间为.取,以为中心作一小矩形,则初值问题 (2)存在唯一的解,解的存在唯一区间为.因为 ,有唯一性定理,在两区间的重叠部分应有,即当时.定义函数 则是方程(3.1)满足(1)(或(2) 的,在上有定义的唯一的解.这样,把方程(3.1)满足(1)的解在定义区间上向右延伸了一段.即把解看作方程(3.1)的解在定义区间的向右延拓,延拓到更大区间.同样的方法,也可把解向左延拓.这种将曲线向左右延拓的办法可继续进行下去,最后将得到一个解,不能再向左右延拓了.这个解称为方程(3.1)的饱和解.推论1 对定义在平面区域上的初值问题

15、 其中若在区域内连续且关于满足局部Lipschtiz条件,则它的任一非饱和解均可延拓为饱和解.推论2 设是初值问题 其中的一个饱和解,则该饱和解的饱和区间一定是开区间.证明 若饱和区间不是开区间,不妨设,则,这样解还可以向右延拓,从而是非饱和解,矛盾.对时,同样讨论,即(或)时, .推论3 如果是无界区域,在上面解的延拓定理的条件下,方程(3.1)通过点的解可以延拓,以向增大(减小)一方的延拓来说,有以下两种情况:(1) 解可以延拓到区间(或);(2) 解只可延拓到区间(或),其中为有限数,则当时,或者无界,或者点.例1讨论方程分别通过点和点的解的存在区间.解 此方程右端函数在整个平面上满足解

16、的存在唯一性定理及解的延拓定理的条件.易知方程的通解为 故通过点的解为,这个解的存在区间为;通过点的解为,这个解的存在区间为(如图所示).注意, 过点的解为向右方可以延拓到,但向左方只能延拓到,因为当时,.例2讨论方程过点的解的存在区间.解 方程右端函数在右半平面上满足解的存在唯一性定理及解的延拓定理的条件.区域(右半平面)是无界开域,轴是它的边界.易知问题的解为,它于区间 上有定义、连续且当时, ,即所求问题的解向右方可以延拓到,但向左方只能延拓到,且当时积分曲线上的点趋向于区域的边界上的点.例3 考虑方程,假设和在平面上连续,试证明:对于任意及,方程满足的解都在上存在.证明 根据题设,易知

17、方程右端函数在整个平面上满足解的存在唯一性定理及解的延拓定理的条件.又为方程在上的解,由延拓定理可知,对,满足的解应当无限远离原点,但是,由解的唯一性, 又不能穿过直线,故只能向两侧延拓,而无限远离原点,从而解应在存在.注: 如果函数于整个平面上定义、连续和有界,同时存在关于的一阶连续偏导数,则方程(3.1)的任一解均可以延拓到区间.练习 试证对任意,方程满足初始条件的解都在上存在.3 解对初值的连续性和可微性定理在初值问题中我们都是把初值看成是固定的数值,然后再去讨论方程经过点的解.但是假如变动,则相应初值问题的解也随之变动,也就是说初值问题的解不仅依赖于自变量,还依赖于初值.例如:时,方程

18、的解是,将初始条件带入,可得.很显然它是自变量和初始条件的函数.因此将对初值问题的解记为,它满足.当初值发生变化时,对应的解是如何变化的?当初始值微小变动时,方程解的变化是否也很小呢?为此就要讨论解对初值的一些性质.1、解关于初值的对称性设方程(3.1)满足初始条件的解是唯一的,记为,则在此关系式中, 与可以调换其相对位置.即在解的存在范围内成立关系式 证明 在方程(3.1)满足初始条件的解的存在区间内任取一点,显然,则由解的唯一性知,过点的解与过点的解是同一条积分曲线,即此解也可写为 并且,有.又由是积分曲线上的任一点,因此关系式对该积分曲线上的任意点均成立. 2、 解对初值的连续依赖性由于

19、实际问题中初始条件一般是由实验 测量得到的,肯定存在误差. 有的时候误差比较大,有的时候误差比较小,在实际应用中我们当然希望误差较小,也就是说当变动很小的时候,相应的方程的解也只有微小的变动,这就是解对初值的连续依赖性所要研究的问题:在讨论这个问题之前,我们先来看一个引理:引理:如果函数于某域内连续,且关于满足Lipschtiz条件(Lipschtiz常数为),则对方程(3.1)的任意两个解及,在它们公共存在的区间内成立着不等式 (3.17)其中为所考虑区域内的某一值.证明 设, 于区间上均有定义,令 则 于是 从而 所以,对,有 对于区间,令,并记,则方程(3.1)变为 而且已知它有解和.类

20、似可得因此, 两边开平方即得(3.17).利用此引理我们可以证明解对初值的连续依赖性: 解对初值的连续依赖定理 假设在区域内连续,且关于满足局部李普希兹条件,如果,初值问题有解,它于区间上有定义(),则对任意, ,使得当时,方程(3.1)满足条件的解在区间上也有定义,并且有 .证明 记积分曲线段是平面上一个有界闭集.第一步:找区域,使,而且在上关于满足Lipschitz条件.由已知条件,对,存在以它为中心的开圆,使在其内关于满足Lipschitz条件.因此,根据有限覆盖定理,可以找到有限个具有这种性质的圆(不同的,其半径和Lipschitz常数的大小可能不同),它们的全体覆盖了整个积分曲线段,

21、令,则,对,记,则以上的点为中心,以为半径的圆的全体及其边界构成包含的有界闭域,且在上关于满足Lipschitz条件, Lipschitz常数为.第二步:证明,使得当时,解在区间上也有定义.由于是一个有界闭域,且在其内关于满足Lipschitz条件,由解的延拓定理可知, 解必能延拓到区域的边界上.设它在的边界上的点为和,这时必有.否则设,由引理有 利用的连续性,对,必有存在,使当时有,取,则当时就有 (3.18)于是对一切成立,特别地有 ,即点和均落在域的内部,这与假设矛盾,故解在区间上有定义.第三步 证明.在不等式(3.18)中将区间换成,可知当时,就有 .根据方程解对初值的连续依赖定理及解

22、对自变量的连续性有3、解对初值的连续性定理若函数在区域内连续,且关于满足局部李普希兹条件,则方程(3.1) 的解作为的函数在它的存在范围内是连续的.证明 对,方程(3.1)过的饱和解定义于上,令 下证在上连续.对,使解在上有定义,其中.对,使得当时, 又在上对连续,故,使得当时有 取,则只要就有 从而得知在上连续.4、解对初值和参数的连续依赖定理 讨论含有参数的微分方程 (3.19) 如果对,都存在以为中心的球,使得对任何,成立不等式 其中是与无关的正数,称函数在内关于一致地满足局部的李普希兹条件.由解的唯一性,对每一,方程(3.19)通过点的解是唯一确定的,记这个解为.设在内连续,且在内关于

23、一致地满足局部的李普希兹条件, 是方程(3.19)通过的解,在区间上有定义,其中,则对,使得当 时,方程(3.19)通过点的解在区间上也有定义,并且 5、解对初值和参数的连续性定理设函数在区域内连续,且在关于一致地满足局部李普希兹条件,则方程(3.19) 的解作为的函数在它的存在范围内是连续的.6、 解对初值的可微性定理如果函数以及都在区域内连续,则对初值问题的解作为 的函数,在它有定义的范围内有连续可微的.证明 由在区域内连续,可知在内关于满足局部Lipschitz条件,根据解对初值的连续性定理,在它的存在范围内关于是连续的.下面证明函数在它的存在范围内的任一点偏导数.即 于是 类似有 即 是初值问题 的解,.根据解对初值和参数的连续性定理 的解,容易得到.类似上述方法可证是初值问题 的解.因而 其中具有性质:所以有 .故 例1已知方程为试求,.解:方程右端函数在平面内连续,且也在平面内连续,且其满足的解为.于是,.收集于网络,如有侵权请联系管理员删除

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 研究生考试

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服