1、高等数学下册黄立宏黄云清答案详解精品文档习题九答案1. 求函数u=xy2+z3-xyz在点(1,1,2)处沿方向角为的方向导数。解:2. 求函数u=xyz在点(5,1,2)处沿从点A(5,1,2)到B(9,4,14)的方向导数。解:的方向余弦为故3. 求函数在点处沿曲线在这点的内法线方向的方向导数。解:设x轴正向到椭圆内法线方向l的转角为,它是第三象限的角,因为所以在点处切线斜率为法线斜率为.于是4.研究下列函数的极值:(1)z=x3+y33(x2+y2);(2)z=e2x(x+y2+2y);(3)z=(6xx2)(4yy2);(4)z=(x2+y2);(5)z=xy(axy),a0.解:(1
2、)解方程组得驻点为(0,0),(0,2),(2,0),(2,2).zxx=6x6, zxy=0, zyy=6y6在点(0,0)处,A=6,B=0,C=-6,B2AC=360,且A0,所以(0,2)点不是极值点.在点(2,0)处,A=6,B=0,C=6,B2AC=360,所以(2,0)点不是极值点.在点(2,2)处,A=6,B=0,C=6,B2AC=360,所以函数有极小值z(2,2)=-8.(2)解方程组得驻点为.在点处,A=2e,B=0,C=2e,B2-AC=-4e20,所以函数有极小值.(3) 解方程组得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Zxx=2(4y-y
3、2),Zxy=4(3x)(2y)Zyy=2(6xx2)在点(3,2)处,A=8,B=0,C=18,B2AC=8180,且A0,所以(0,0)点不是极值点.在点(0,4)处,A=0,B=-24,C=0,B2AC0,所以(0,4)不是极值点.在点(6,0)处,A=0,B=-24,C=0,B2AC0,所以(6,0)不是极值点.在点(6,4)处,A=0,B=24,C=0,B2AC0,所以(6,4)不是极值点.(4)解方程组得驻点P0(0,0),及P(x0,y0),其中x02+y02=1,在点P0处有z=0,而当(x,y)(0,0)时,恒有z0,故函数z在点P0处取得极小值z=0.再讨论函数z=ue-u
4、由,令得u=1,当u1时,;当u1或x2+y21,均有.故函数z在点(x0,y0)取得极大值z=e-1(5)解方程组得驻点为 zxx=-2y, zxy=a-2x-2y, zyy=-2x.故z的黑塞矩阵为 于是 易知H(P1)不定,故P1不是z的极值点,H(P2)当a0时负定,故此时P2是z的极大值点,且.5. 设2x2+2y2+z2+8xz-z+8=0,确定函数z=z(x,y),研究其极值。解:由已知方程分别对x,y求导,解得令解得,将它们代入原方程,解得.从而得驻点.在点(-2,0)处,B2-AC0,因此函数有极小值z=1.在点处,B2-AC0,函数有极大值.6. 在平面xOy上求一点,使它
5、到x=0,y=0及x+2y-16=0三直线距离的平方之和为最小。解:设所求点为P(x,y),P点到x=0的距离为|x|,到y=0的距离为|y|,到直线x+2y-16=0的距离为距离的平方和为由得唯一驻点,因实际问题存在最小值,故点即为所求。7. 求旋转抛物面z=x2+y2与平面x+y-z=1之间的最短距离。解:设P(x,y,z)为抛物面上任一点.则点P到平面的距离的平方为,即求其在条件z= x2+y2下的最值。设F(x,y,z)=解方程组得故所求最短距离为8. 抛物面z=x2+y2被平面x+y+z=1截成一椭圆,求原点到这椭圆的最长与最短距离。解:设椭圆上的点为P(x,y,z),则|OP|2=
6、x2+y2+z2.因P点在抛物面及平面上,所以约束条件为z=x2+y2, x+y+z=1设F(x,y,z)= x2+y2+z2+1(z-x2-y2)+2(x+y+z-1)解方程组得 由题意知,距离|OP|有最大值和最小值,且.所以原点到椭圆的最长距离是,最短距离是.9. 在第I卦限内作椭球面的切平面,使切平面与三坐标面所围成的四面体体积最小,求切点坐标。解:令椭球面上任一点的切平面方程为即 切平面在三个坐标轴上的截距分别为,因此切平面与三个坐标面所围的四面体的体积为即求在约束条件下的最小值,也即求xyz的最大值问题。设 ,解方程组得.故切点为,此时最小体积为*10. 设空间有n个点,坐标为,试
7、在xOy面上找一点,使此点与这n个点的距离的平方和最小。解:设所求点为P(x,y,0),则此点与n个点的距离的平方和为解方程组得驻点又在点处Sxx=2n=A, Sxy=0=B, Syy=2n=CB2-AC=-4n20取得最小值.故在点处,S取得最小值.即所求点为.11. 已知平面上分别带有质量m1,m2,m3的三个质点,问点的位置如何才能使该质点系对于p点的转动惯量为最小。解:该质点系对于p点的转动惯量为解上式得驻点因驻点唯一,故转动惯量在点处取得最小值.*12. 已知过去几年产量和利润的数据如下:产量x(千件)4047557090100利润y(千元)323443547285试求产量和利润的函
8、数关系,并预测当产量达到120千件时工厂的利润。解:在直角坐标系下描点,从图可以看出,这些点大致接近一条直线,因此可设f(x)=ax+b,求的最小值,即求解方程组把(xi,yi)代入方程组,得解得 a=0.884, b=-5.894即 y=0.884x-5.894,当x=120时,y=100.186(千元).13. 求下曲线在给定点的切线和法平面方程:(1)x=asin2t,y=bsintcost,z=ccos2t,点;(2)x2+y2+z2=6,x+y+z=0,点M0(1,-2,1);(3)y2=2mx,z2=m-x,点M0(x0,y0,z0).解:曲线在点的切向量为当时, 切线方程为.法平
9、面方程为即 .(2)联立方程组它确定了函数y=y(x),z=z(x),方程组两边对x求导,得解得 在点M0(1,-2,1)处,所以切向量为1,0,-1.故切线方程为法平面方程为1(x-1)+0(y+2)-1(z-1)=0即x-z=0.(3)将方程y2=2mx,z2=m-x两边分别对x求导,得于是 曲线在点(x0,y0,z0)处的切向量为,故切线方程为法平面方程为.14. t(0t2)为何值时,曲线L:x=t-sint, y=1-cost,z=4sin在相应点的切线垂直于平面,并求相应的切线和法平面方程。解:,在t处切向量为,已知平面的法向量为.且,故解得,相应点的坐标为.且故切线方程为法平面方
10、程为即 .15. 求下列曲面在给定点的切平面和法线方程:(1)z=x2+y2,点M0(1,2,5);(2)z=arctan,点M0(1,1,);解:(1)故曲面在点M0(1,2,5)的切平面方程为z-5=2(x-1)+4(y-2).即 2x+4y-z=5.法线方程为(2)故曲面在点M0(1,1,)的切平面方程为z-=- (x-1)+(y-1).法线方程为.16.指出曲面z=xy上何处的法线垂直于平面x-2y+z=6,并求出该点的法线方程与切平面方程。解:zx=y,zy=x.曲面法向量为.已知平面法向量为.且,故有解得x=2,y=-1,此时,z=-2.即(2,-1,-2)处曲面的法线垂直于平面,
11、且在该点处的法线方程为.切平面方程为-1(x-2)+2(y+1)-(z+2)=0即 x-2y+z-2=0.17. 证明:螺旋线x=acost,y=asint,z=bt的切线与z轴形成定角。证明:螺旋线的切向量为.与z轴同向的单位向量为两向量的夹角余弦为为一定值。故螺旋线的切线与z轴形成定角。18. 证明:曲面xyz=a3上任一点的切平面与坐标面围成的四面体体积一定。证明:设 F(x,y,z)=xyz-a3.因为 Fx=yz,Fy=xz,Fz=xy,所以曲面在任一点M0(x0,y0,z0)处的切平面方程为y0z0(x-x0)+x0z0(y-y0)+x0y0(z-z0)=0.切平面在x轴,y轴,z轴上的截距分别为3x0,3y0,3z0.因各坐标轴相互垂直,所以切平面与坐标面围成的四面体的体积为它为一定值。收集于网络,如有侵权请联系管理员删除