收藏 分销(赏)

七年级上册数学期末模拟试卷学习专用.doc

上传人:精*** 文档编号:3759765 上传时间:2024-07-16 格式:DOC 页数:20 大小:37.50KB 下载积分:10 金币
下载 相关 举报
七年级上册数学期末模拟试卷学习专用.doc_第1页
第1页 / 共20页
七年级上册数学期末模拟试卷学习专用.doc_第2页
第2页 / 共20页


点击查看更多>>
资源描述
教育资源 2019学年七年级上册数学期末模拟试卷   经历了半学期的努力奋战,检验学习成果的时刻就要到了,期末考试考查的不仅是同学们对知识点的掌握还考查学生的灵活运用能力,我们一起来通过这篇七年级上册数学期末模拟试卷提升一下自己的解题速率和能力吧! 一、精心选一选(本大题共10小题,每小题3分,共30分.) 1.﹣6的相反数是() A. ﹣6 B. 6 C. ﹣ D. 2.下列计算正确的是() A. 3a+2b=5ab B. a3+a3=2a3 C. 4m3﹣m3=3 D. 4x2y﹣2xy2=2xy 3.若x=1是方程2x+m﹣6=0的解,则m的值是() A. ﹣4 B. 4 C. ﹣8 D. 8 4.据统计,2019年12月全国约有1650000人参加研究生考试,把1650000用科学记数法表示为() A. 165104 B. 16.5105 C. 0.165107 D. 1.65106 5.下列结论中,不正确的是() A. 两点确定一条直线 B. 等角的余角相等 C. 过一点有且只有一条直线与已知直线平行 D. 两点之间的所有连线中,线段最短 6.已知 是二元一次方程组 的解,则m﹣n的值是() A. 1 B. 2 C. 3 D. 4 7.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为() A. ﹣2a B. 2b C. 2a D. ﹣2b 8.下列图形中,能折叠成正方体的是() A. B. C. D. 9.在今年某月的日历中,用正方形方框圈出的4个数之和是48,则这四个数中最大的一个数是() A. 8 B. 14 C. 15 D. 16 10.一列单项式按以下规律排列:x,3x2,5x2,7x,9x2,l1x2,13x,,则第2019个单项式应是() A. 4029x2 B. 4029x C. 4027x D. 4027x2 二、细心填一填:(请将下列各题的正确答案填在第二张试卷的横线上.本 大题共8小题,每小题3分,共24分.) 11.2019年元旦这一天淮安的气温是﹣3℃~5℃,则该日的温差是℃. 12.一个数的绝对值是3,则这个数是. 13.如图,线段AB=8,C是AB的中点,点D在CB上,DB=1.5,则线段CD的长等于. 14.如图,直线AB、CD相交于点O,DOF=90,OF平分AOE,若BOD=28,则EOF的度数为. 15.已知AOB=80,以O为顶点,OB为一边作BOC=20,则AOC的度数为. 16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元. 17.一种新运算,规定有以下两种变换: ①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2); ②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2). 按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于. 18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆(用含n的代数式表示) 三、细心算一算(本题共10小题,共96分,解答时应写出必要的计算过程,推理步骤或文字说明.) 19.计算 (1)﹣2+6(﹣2) (2)(﹣2)3﹣(1﹣ )|3﹣(﹣3)2| 20.解下列方程: (1)2y+1=5y+7 (2) 21.解方程组 . 22.先化简后求值2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y的值,其中x=﹣1,y=2. 23.(1)由大小相同的小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图. (2)用小立方体搭一几何体,使得它的俯视图和左视图与你在图2方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块. 24.(1)如图1,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求BD的长; (2)如图2,OC是AOB内任一条射线,OM、ON分别平分AOC、BOC,若AOB=100,请求出MON的大小. 25.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如下: 星期一星 期二星期三星期四星期五 ﹣5+3+8a+14 (1)上期三借出图书多少册? (2)上星期五比上星期四多借出图书24册,求a的值; (3)上星期平均每天借出图书多少册? 26.我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示 为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请回答下列问题: (1)数轴上表示3和圆周率的两点之间的距离是; (2)若数轴上表示x和﹣4的两点之间的距离为3,试求有理数x值. 27.某超市用6800元购进A、B两种计算器共120只,这两种计算器的进价、标价如表. 价格类型A型B型 进价(元/只)3070 标价(元/只)50100 (1)这两种计算器各购进多少只? (2)若A型计算器按标价的9折出售,B型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元? 28.已知:线段AB=40cm. (1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇? (2)几秒钟后,P、Q相距16cm? (3)如图2,AO=PO=8厘米,POB=40,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度. 参考答案与试题解析 一、精心选一选(本大题共10小题,每小题3分,共30分.) 1.﹣6的相反数是() A. ﹣6 B. 6 C. ﹣ D. 考点: 相反数. 分析: 根据相反数的概念解答即可. 2.下列计算正确的是() A. 3a+2b=5ab B. a3+a3=2a3 C. 4m3﹣m3=3 D. 4x2y﹣ 2xy2=2xy 考点: 合并同类项. 分析: 根据合并同类项:系数相加字母部分不变,可得答案. 解答: 解:A、不是同类项不能合并,故A错误; B、系数相加字母部分不变,故B正确; C、系数相加字母部分不变,故C错误; 3.若x= 1是方程2x+m﹣6=0的解,则m的值是() A. ﹣4 B. 4 C. ﹣8 D. 8 考点: 一元一次方程的解. 分析: 根据一元一次方程的解的定义,将x=1代入已知方程,列出关于m的新方程,通过解新方程来求m的值. 解答: 解:根据题意,得 4.据统计,2019年12月全国约有1650000人参加研究生考试,把1650000用科学记数法表示为() A. 165104 B. 16.5105 C. 0.165107 D. 1.65106 考点: 科学记数法表示较大的数. 分析: 科学记数法的表示形式为a10n的形式,其中110,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数. 5.(3分)(2019秋清河区校级 期末)下列结论中,不正确的是() A. 两点确定一条直线 B. 等角的余角相等 C. 过一点有且只有一条直线与已知直线平行 D. 两点之间的所有连线中,线段最短 考点: 平行公理及推论;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;余角和补角. 分析: 分别利用直线的性质以及线段的性质和平行公理及推论和余角的性质分析求出即可. 解答: 解:A、两点确定一条直线,正确,不合题意; B、等角的余角相等,正确,不合题意; C、过直线外一点有且只有一条直线与已知直线平行,故此选项错误,符合题意; D、两点之间的所有连线中,线段最短,正确,不合题意; 6.已知 是二元一次方程组 的解,则m﹣n的值是() A. 1 B. 2 C. 3 D. 4 考点: 二元一次方程组的解. 专题:计算题. 分析: 将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值. 解答: 解:将x=﹣1,y=2代入方程组得: , 解得:m=1,n=﹣3, 则m﹣n=1﹣(﹣3)=1+3=4. 故选:D 点 评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 7.有理数a、b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果为() A. ﹣2a B. 2b C. 2a D. ﹣2b 考点: 整式的加减;数轴;绝对值. 分析: 根据数轴上点的位置判断绝对值里边式子的正负 ,利用绝对值的代数意义化简,去括号合并即可得到结果. 解答: 解:根据数轴上点的位置得:a0 8.下列图形中,能折叠成正方体的是() A. B. C. D. 考点: 展开图折叠成几何体. 分析: 根据正方体展开图的常见形式作答即可.注意只要有田凹字格的展开图都不是正方体的表面展开图. 解答: 解:A、可以折叠成一个正方体,故选项正确; B、有凹字格,不是正方体的表面展开图,故选项错误; C、折叠后有两个面重合,不能折叠成一个正方体,故选项错误; D、有田字格,不是正方体的表面展开图,故选项错误. 9.在今年某月的日历中,用正方形方框圈出的4个数之和是48,则这四个数中最大的一个数是() A. 8 B. 14 C. 15 D. 16 考点: 一元一次方程的应用. 分析: 设最大的一个数为x,表示出其他三个数,根据之和为48列出方程,求出方程的解即可得到结果. 解答: 解:设最大 的一个数为x,则其他三个数分别为x﹣7,x﹣8,x﹣1, 根据题意得:x﹣8+x﹣7+x﹣1+x=48, 10.一列单项式按以下规律排列:x,3x2,5x2,7x,9x2,l1x2,13x,,则第2019个单项式应是() A. 4029x2 B. 4029x C. 4027x D. 4027x2 考点: 单项式. 专题: 规律型. 分析: 根据单项式的规律,n项的系数是(2n﹣1),次数的规律是每三个是一组,分别是1次,2次2次,可得答案. 解答: 解:20193=6711 二、细心填一填:(请将下列各题的正确答案填在第二张试卷的横线上.本大题共8小题,每小题3分,共24分.) 11.2019年元旦这一天淮安的气温是﹣3℃~5℃,则该日的温差是 8 ℃. 考点: 有理数的减法. 分析: 用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解. 解答: 解:5﹣(﹣3) 12.一个数的绝对值是3,则这个数是 3 . 考点: 绝对值. 分析: 根据绝对值的性质得,|3|=3,|﹣3|=3,故求得绝对值等于3的数. 本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0. 13.如图,线段AB=8,C是AB的中点,点D在CB上,DB=1.5,则线段CD的长等于 2.5 . 考点: 两点间的距离. 分析: 先根据线段AB=8,C是AB的中点得出BC的长,再由点D在CB上,DB=1.5即可得出CD的长. 解答: 解:∵线段AB=8,C是AB的中点, CB= AB=8. ∵点D在CB上,DB=1.5, 14.如图,直线AB、CD相交于点O,DOF=90,OF平分AOE,若BOD=28,则EOF的度数为 62 . 考点: 对顶角、邻补角;角平分线的定义. 分析: 根据平角的性质得出COF=90,再根据对顶角相等得出AOC=28,从而求出AOF的度数,最后根据角平分线的性质即可得出EOF的度数. 解答: 解:∵DOF=90, COF=90, ∵BOD=28, AOC=28, AOF=90﹣28=62, 15.已知AOB=80,以O为顶点,OB为一边作BOC=20,则AOC的度数为 60或100 . 考点: 角的计算. 专题: 分类讨论. 分析: 根据BOC的位置,当BOC的一边OC在AOB外部时,两角相加,当BOC的一边OC在AOB内部时,两角相减即可. 解答: 解:以O为顶点,OB为一边作BOC=20有两种情况: 当BOC的一边OC在AOB外部时,则AOC=AOB+BOC=80+20=100 当BOC的一边OC在AOB内部时,则AOC=AOB﹣BOC=80﹣20=60. 16.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是 20 元. 考点: 一元一次方程的应用. 专题: 经济问题. 分析: 等量关系为:打九折的售价﹣打八折的售价=2.根据这个等量关系,可列出方程,再求解. 解答: 解:设原价为x元, 由题意得:0.9x﹣0.8x=2 17.一种新运算,规定有以下两种变换: ①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2); ②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2). 按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于 (﹣5,﹣6) . 考点: 有理数的混合运算. 专题: 新定义. 分析: 根据题中的两种变换化简所求式子,计算即可得到结果. 解答: 解:根据题意得:g[f(5,﹣6)]=g(5,6)=(﹣5,﹣6). 18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有 4+n(n+1) 个小圆(用含n的代数式表示) 考点: 规律型:图形的变化类. 专题: 规律型. 分析: 本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律. 解答: 解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆, ∵6=4+12,10=4+23,16=4+34,24=4+45, 三、细心算一算(本题共10小题,共96分,解答时应写出必要的计算过程,推理步骤或文字说明.) 19.计算 (1)﹣2+6(﹣2) (2)(﹣2)3﹣(1﹣ )|3﹣(﹣3)2| 考点: 有理数的混合运算. 专题:计算题. 分析: (1)原式先计算乘除运算,再计算加减运算即可得到结果; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果. 解答: 解:(1)原式=﹣2﹣6 =﹣2﹣ =﹣3 ; 20.解下列方程: (1)2y+1=5y+7 (2) 考点: 解一元一次方程. 专题: 计算题. 分析: (1)先移项,再合并同类项,最后化系数为1,从而得到方程的解; (2)去分母,移项,再合并同类项,最后化系数为1,从而得到方程的解. 解答: 解:(1)2y+1=5y+7 2y﹣5y=7﹣1 ﹣3y=6 y=﹣2; (2)方程去分母得4﹣6x=3x+3﹣6 21.解方程组 . 考点: 解二元一次方程组. 专题: 计算题. 分析: 方程组中两方程相加消去y求出x的值,进而求出y的值,即可确定出方程组的解. 解答: 解: , ①+②得:3x=6, 解得:x=2, 将x=2代入①得:2+y=1, 22.先化简后求值2(x2y+xy2)﹣2(x2y﹣3x)﹣2xy2﹣2y的值,其中x=﹣1,y=2. 考点: 整式的加减化简求值;合并同类项;去括号与添括号. 专题: 计算题. 分析: 根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可. 解答: 解:原式=2x2y+2xy2﹣2x2y+6 x﹣2xy2﹣2y =6x﹣2y, 23.(1)由大小相同的小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图. (2)用小立方体搭一几何体,使得它的俯视图和左视图与你在图2方格中所画的图一致,则这样的几何体最少要 5 个小立方块,最多要 7 个小立方块. 考点: 作图-三视图. 分析: (1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可; (2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少个数和最多个数相加即可. 解答: 解:(1) (2)解:由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块; 24.(1)如图1,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求BD的长; (2)如图2,OC是AOB内任一条射线,OM、ON分别平分AOC、BOC,若AOB=100,请求出MON的大小. 考点: 两点间的距离;角平分线的定义. 分析: (1)由已知条件可知,BC=2AB,AB=6,则BC=12,故AC=AB+BC可求;又因为点D是AC的中点,则AD= AC,故BD=BC﹣DC可求. (2)根据角平分线的性质,可得MOC与NOC的关系,AOM与COM的关系,根据角的和差,可得答案. 解答: 解:(1)∵BC=2AB,AB=6, BC=12, AC=AB+BC=18, ∵D是AC的中点, AD= AC=9, BD=BC﹣DC=12﹣9=3. (2)OM、ON分别平分AOC、BOC, NOC= BOC,COM= AOC, 25.学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作﹣10.上星期图书馆借出图书记录如下: 星期一星期二星期三星期四星期五 ﹣5+3+8a+14 (1)上期三借出图书多少册? (2)上星期五比上星期四多借出图书24册,求a的值; (3)上星期平均每天借出图书多少册? 考点: 正数和负数. 分析: (1)根据超过标准记为正,星期三+8,可得答案; (2)根据有理数的减法,星期五+14,可得答案; (3)根据有理数的加法,可得借书总数,根据借书总数除以时间,可得答案. 解答: 解:(1)+8+50=58(册), 答:上期三借出图书58册; (2)上星期五比上星期四多借出图书24册,得 14﹣a=24, a=﹣10. (3)(﹣5+3+8﹣10+14)5+50=52(册), 26.我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请回答下列问题: (1)数轴上表示3和圆周率的两点之间的距离是 (2)若数轴上表示x和﹣4的两点之间的距离为3,试求有理数x值. 考点: 数轴. 分析: 根据数轴上两点间的距离是大数减小数,可得答案. 解答: 解:(1)数轴上表示3和圆周率的两点之间的距离是 ﹣3, 故答案为: (2)数轴上表示x和﹣4的两点之间的距离为3, 27.某超市用6800元购进A、B两种计算器共120只,这两种计算器的进价、标价如表. 价格类型A型B型 进价(元/只)3070 标价(元/只)50100 (1)这两种计算器各购进多少只? (2)若A型计算器按标价的9折出售,B型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元? 考点: 一元一次方程的应用. 分析: (1)设A种计算器购进x台,则购进B种计算机(120﹣x)台,根据总进价为6800元,列方程求解; (2)用总售价﹣总进价即可求出获利. 解答: 解:(1)设A种计算器购进x台,则购进B种计算机(120﹣x)台, 由题意得:30x+70(120﹣x)=6800, 解得:x=40, 则120﹣x=80, 答:购进甲种计算器40只,购进乙种计算器80只; (2)总获利为:(5090%)40+(10080%)80﹣6800=1400, 28.已知:线段AB=40cm. (1)如图1,点P沿线段AB自A点向B点以3厘米/秒运动,同时点Q沿线段BA自B点向A点以5厘米/秒运动,问经过几秒后P、Q相遇? 昆虫记阅读题及答案(2)几秒钟后,P、Q相距16cm? 有趣的线造型美术教案(3)如图2,AO=PO=8厘米,POB=40,点P绕着点O以20度/秒的速度顺时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度. 智能文明答案考点: 一元一次方程的应用. 专 题: 几何动点问题. 分析: (1)根据相遇时,点P和点Q的运动的路程和等于AB的长列方程即可求解; (2)设经过xs,P、Q两点相距10cm,分相遇前和相遇后两种情况建立方程求出其解即可; (3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解. 解答: 解:(1)设经过ts后,点P、Q相遇. 依题意,有3t+5t=40, 暑假放假时间2019小学解得t=5. 《春雨》阅读答案小学答:经过5秒钟后P、Q相遇; (2)设经过xs,P、Q两点相距16cm,由题意得 政治理论知识应知应会3x+5x+16=40或3x+5x﹣16=40, 解得:x=3或x=7. 机械能及其转化教学反思答:经过3秒钟或7秒钟后,P、Q相距16cm; 数学工程问题(3)点 P,Q只能在直线AB上相遇, 有限空间作业试题教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。则点P旋转到直线AB上的时间为4020=2s或(40+80)20=11s. 文成公主进藏教学实录唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。设点Q的速度为ycm/s,则有2y=40﹣16,解得y=12或11y=40,解得y= . 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。希望为大家提供的七年级上册数学期末模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注! 教育资源
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服