资源描述
高中数学数列练习题及解析
精品文档
数列练习题
一.选择题(共16小题)
1.数列{an}的首项为3,{bn}为等差数列且bn=an+1﹣an(n∈N*),若b3=﹣2,b10=12,则a8=( )
A.
0
B.
3
C.
8
D.
11
2.在数列{an}中,a1=2,an+1=an+ln(1+),则an=( )
A.
2+lnn
B.
2+(n﹣1)lnn
C.
2+nlnn
D.
1+n+lnn
3.已知数列{an}的前n项和Sn=n2﹣9n,第k项满足5<ak<8,则k等于( )
A.
9
B.
8
C.
7
D.
6
4.已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( )
A.
2n﹣1
B.
C.
D.
5.已知数列{an}满足a1=1,且,且n∈N*),则数列{an}的通项公式为( )
A.
an=
B.
an=
C.
an=n+2
D.
an=(n+2)3n
6.已知数列{an}中,a1=2,an+1﹣2an=0,bn=log2an,那么数列{bn}的前10项和等于( )
A.
130
B.
120
C.
55
D.
50
7.在数列中,若,则该数列的通项( )
A.
B.
C.
D.
8.在数列{an}中,若a1=1,a2=,=+(n∈N*),则该数列的通项公式为( )
A.
an=
B.
an=
C.
an=
D.
an=
9.已知数列{an}满足an+1=an﹣an﹣1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是( )
A.
a100=﹣1,S100=5
B.
a100=﹣3,S100=5
C.
a100=﹣3,S100=2
D.
a100=﹣1,S100=2
10.已知数列{an}中,a1=3,an+1=2an+1,则a3=( )
A.
3
B.
7
C.
15
D.
18
11.已知数列{an},满足an+1=,若a1=,则a2014=( )
A.
B.
2
C.
﹣1
D.
1
12.已知数列中,,,,则=( )
A.
B.
C.
D.
13.已知数列中,;数列中,。当时,,,求,.( )
14.已知:数列{an}满足a1=16,an+1﹣an=2n,则的最小值为( )
A.
8
B.
7
C.
6
D.
5
15.已知数列{an}中,a1=2,nan+1=(n+1)an+2,n∈N+,则a11=( )
A.
36
B.
38
C.
40
D.
42
16.已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn﹣1=n,则S2015的值为( )
A.
2015
B.
2013
C.
1008
D.
1007
二.填空题(共8小题)
17.已知无穷数列{an}前n项和,则数列{an}的各项和为
18.若数列{an}中,a1=3,且an+1=an2(n∈N*),则数列的通项an= .
19.数列{an}满足a1=3,﹣=5(n∈N+),则an= .
20.已知数列{an}的前n项和Sn=n2﹣2n+2,则数列的通项an= .
21.已知数列{an}中,,则a16= .
22.已知数列{an}的通项公式an=,若它的前n项和为10,则项数n为 .
23.数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为 .
24.已知数列{an},{bn}满足a1=,an+bn=1,bn+1=(n∈N*),则b2012= .
三.解答题(共6小题)
25.设数列 {an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4Sn+2+5Sn=8Sn+1+Sn﹣1.
(1)求a4的值;(2)证明:{an+1﹣an}为等比数列;
(3)求数列{an}的通项公式.
26.数列{an}满足a1=1,a2=2,an+2=2an+1﹣an+2.
(Ⅰ)设bn=an+1﹣an,证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.
27.在数列{an}中,a1=1,an+1=(1+)an+.
(1)设bn=,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn.
28.(2015•琼海校级模拟)已知正项数列满足4Sn=(an+1)2.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
29.已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令,{cn}的前20项和T20=330.数列{bn}满足bn=2(a﹣2)dn﹣2+2n﹣1,a∈R.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn+1≤bn,n∈N*,求a的取值范围.
30.已知数列{an}中,a1=3,前n和Sn=(n+1)(an+1)﹣1.
①求证:数列{an}是等差数列
②求数列{an}的通项公式
③设数列{}的前n项和为Tn,是否存在实数M,使得Tn≤M对一切正整数n都成立?若存在,求M的最小值,若不存在,试说明理由.
2015年08月23日1384186492的高中数学组卷
参考答案与试题解析
一.选择题(共16小题)
1.(2014•湖北模拟)数列{an}的首项为3,{bn}为等差数列且bn=an+1﹣an(n∈N*),若b3=﹣2,b10=12,则a8=( )
A.
0
B.
3
C.
8
D.
11
(累加)
考点:
数列递推式.
专题:
计算题.
分析:
先利用等差数列的通项公式分别表示出b3和b10,联立方程求得b1和d,进而利用叠加法求得b1+b2+…+bn=an+1﹣a1,最后利用等差数列的求和公式求得答案.
解答:
解:依题意可知求得b1=﹣6,d=2
∵bn=an+1﹣an,
∴b1+b2+…+bn=an+1﹣a1,
∴a8=b1+b2+…+b7+3=+3=3
故选B.
点评:
本题主要考查了数列的递推式.考查了考生对数列基础知识的熟练掌握.
2.(2008•江西)在数列{an}中,a1=2,an+1=an+ln(1+),则an=( )
A.
2+lnn
B.
2+(n﹣1)lnn
C.
2+nlnn
D.
1+n+lnn
(累加)
考点:
数列的概念及简单表示法.菁优网版权所有
专题:
点列、递归数列与数学归纳法.
分析:
把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.
解答:
解:∵,
,
…
∴
=
故选:A.
点评:
数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.
3.(2007•广东)已知数列{an}的前n项和Sn=n2﹣9n,第k项满足5<ak<8,则k等于( )
A.
9
B.
8
C.
7
D.
6
考点:
数列递推式.菁优网版权所有
专题:
计算题.
分析:
先利用公式an=求出an,再由第k项满足5<ak<8,求出k.
解答:
解:an=
=
∵n=1时适合an=2n﹣10,∴an=2n﹣10.
∵5<ak<8,∴5<2k﹣10<8,
∴<k<9,又∵k∈N+,∴k=8,
故选B.
点评:
本题考查数列的通项公式的求法,解题时要注意公式an=的合理运用.
4.(2015•房山区一模)已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( )
A.
2n﹣1
B.
C.
D.
考点:
数列递推式;等差数列的通项公式;等差数列的前n项和.菁优网版权所有
专题:
计算题.
分析:
直接利用已知条件求出a2,通过Sn=2an+1,推出数列是等比数列,然后求出Sn.
解答:
解:因为数列{an}的前n项和为Sn,a1=1,Sn=2an+1,a2=
所以Sn﹣1=2an,n≥2,可得an=2an+1﹣2an,即:,
所以数列{an}从第2项起,是等比数列,所以Sn=1+=,n∈N+.
故选:B.
点评:
本题考查数列的递推关系式的应用,前n项和的求法,考查计算能力.
5.(2015•衡水四模)已知数列{an}满足a1=1,且,且n∈N*),则数列{an}的通项公式为( )
A.
an=
B.
an=
C.
an=n+2
D.
an=(n+2)3n
考点:
数列递推式.菁优网版权所有
分析:
由题意及足a1=1,且,且n∈N*),则构造新的等差数列进而求解.
解答:
解:因为,且n∈N*)⇔,
即,则数列{bn}为首项,公差为1的等差数列,
所以bn=b1+(n﹣1)×1=3+n﹣1=n+2,所以,
故答案为:B
点评:
此题考查了构造新的等差数列,等差数列的通项公式.
6.(2015•江西一模)已知数列{an}中,a1=2,an+1﹣2an=0,bn=log2an,那么数列{bn}的前10项和等于( )
A.
130
B.
120
C.
55
D.
50
考点:
数列递推式;数列的求和.菁优网版权所有
专题:
等差数列与等比数列.
分析:
由题意可得,可得数列{an}是以2为首项,2为公比的等比数列,利用等比数列的通项公式即可得到an,利用对数的运算法则即可得到bn,再利用等差数列的前n项公式即可得出.
解答:
解:在数列{an}中,a1=2,an+1﹣2an=0,即,
∴数列{an}是以2为首项,2为公比的等比数列,
∴=2n.
∴=n.
∴数列{bn}的前10项和=1+2+…+10==55.
故选C.
点评:
熟练掌握等比数列的定义、等比数列的通项公式、对数的运算法则、等差数列的前n项公式即可得出.
7.在数列中,若,则该数列的通项( )
A.
B.
C.
D.
8.(2015•遵义校级二模)在数列{an}中,若a1=1,a2=,=+(n∈N*),则该数列的通项公式为( )
A.
an=
B.
an=
C.
an=
D.
an=
考点:
数列递推式.菁优网版权所有
专题:
计算题;等差数列与等比数列.
分析:
由=+,确定数列{}是等差数列,即可求出数列的通项公式.
解答:
解:∵=+,
∴数列{}是等差数列,
∵a1=1,a2=,
∴=n,
∴an=,
故选:A.
点评:
本题考查数列递推式,考查数列的通项公式,确定数列{}是等差数列是关键.
9.(2015•锦州一模)已知数列{an}满足an+1=an﹣an﹣1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是( )
A.
a100=﹣1,S100=5
B.
a100=﹣3,S100=5
C.
a100=﹣3,S100=2
D.
a100=﹣1,S100=2
考点:
数列递推式;数列的求和.菁优网版权所有
专题:
等差数列与等比数列.
分析:
由an+1=an﹣an﹣1(n≥2)可推得该数列的周期为6,易求该数列的前6项,由此可求得答案.
解答:
解:由an+1=an﹣an﹣1(n≥2),得
an+6=an+5﹣an+4=an+4﹣an+3﹣an+4=﹣an+3=﹣(an+2﹣an+1)=﹣(an+1﹣an﹣an+1)=an,
所以6为数列{an}的周期,
又a3=a2﹣a1=3﹣1=2,a4=a3﹣a2=2﹣3=﹣1,a5=a4﹣a3=﹣1﹣2=﹣3,a6=a5﹣a4=﹣3﹣(﹣1)=﹣2,
所以a100=a96+4=a4=﹣1,
S100=16(a1+a2+a3+a4+a5+a6)+a1+a2+a3+a4=16×0+1+3+2﹣1=5,
故选A.
点评:
本题考查数列递推式、数列求和,考查学生分析解决问题的能力.
10.(2015春•沧州期末)已知数列{an}中,a1=3,an+1=2an+1,则a3=( )
A.
3
B.
7
C.
15
D.
18
考点:
数列的概念及简单表示法.菁优网版权所有
专题:
点列、递归数列与数学归纳法.
分析:
根据数列的递推关系即可得到结论.
解答:
解:∵a1=3,an+1=2an+1,
∴a2=2a1+1=2×3+1=7,
a3=2a2+1=2×7+1=15,
故选:C.
点评:
本题主要考查数列的计算,利用数列的递推公式是解决本题的关键,比较基础.
11.(2015春•巴中校级期末)已知数列{an},满足an+1=,若a1=,则a2014=( )
A.
B.
2
C.
﹣1
D.
1
考点:
数列递推式.菁优网版权所有
专题:
等差数列与等比数列.
分析:
由已知条件,分别令n=1,2,3,4,利用递推思想依次求出数列的前5项,由此得到数列{an}是周期为3的周期数列,由此能求出a2014.
解答:
解:∵数列{an},满足an+1=,a1=,
∴a2==2,
a3==﹣1,
a4==,
,
∴数列{an}是周期为3的周期数列,
∵2014÷3=671…1,
∴a2014=a1=.
故选:A.
点评:
本题考查数列的第2014项的求法,是中档题,解题时要认真审题,注意递推思想的合理运用.
12.已知数列中,,,,则=( )
A.
B.
C.
D.
13.已知数列中,;数列中,。当时,,,求,.( )
A.
C.
B.
解:因
所以
即…………………………………………(1)
又因为
所以……
.即………………………(2)
由(1)、(2)得:,
14.(2014•通州区二模)已知:数列{an}满足a1=16,an+1﹣an=2n,则的最小值为( )
A.
8
B.
7
C.
6
D.
5
考点:
数列递推式.菁优网版权所有
专题:
计算题;压轴题.
分析:
a2﹣a1=2,a3﹣a2=4,…,an+1﹣an=2n,这n个式子相加,就有an+1=16+n(n+1),故,由此能求出的最小值.
解答:
解:a2﹣a1=2,
a3﹣a2=4,
…
an+1﹣an=2n,
这n个式子相加,就有
an+1=16+n(n+1),
即an=n(n﹣1)+16=n2﹣n+16,
∴,
用均值不等式,知道它在n=4的时候取最小值7.
故选B.
点评:
本题考查数更列的性质和应用,解题时要注意递推公式的灵活运用.
15.(2014•中山模拟)已知数列{an}中,a1=2,nan+1=(n+1)an+2,n∈N+,则a11=( )
A.
36
B.
38
C.
40
D.
42
考点:
数列递推式.菁优网版权所有
专题:
综合题;等差数列与等比数列.
分析:
在等式的两边同时除以n(n+1),得﹣=2(﹣),然后利用累加法求数列的通项公式即可.
解答:
解:因为nan+1=(n+1)an+2(n∈N*),
所以在等式的两边同时除以n(n+1),得﹣=2(﹣),
所以=+2[(﹣)+(﹣)+…+(1﹣)]=
所以a11=42
故选D.
点评:
本题主要考查利用累加法求数列的通项公式,以及利用裂项法求数列的和,要使熟练掌握这些变形技巧.
16.(2015•绥化一模)已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an+2Sn﹣1=n,则S2015的值为( )
A.
2015
B.
2013
C.
1008
D.
1007
考点:
数列递推式.菁优网版权所有
专题:
点列、递归数列与数学归纳法.
分析:
根据an+2Sn﹣1=n得到递推关系an+1+an=1,n≥2,从而得到当n是奇数时,an=1,n是偶数时,an=0,即可得到结论.
解答:
解:∵当n≥2时,an+2Sn﹣1=n,
∴an+1+2Sn=n+1,两式相减得:
an+1+2Sn﹣(an+2Sn﹣1)=n+1﹣n,
即an+1+an=1,n≥2,
当n=2时,a2+2a1=2,解得a2=2﹣2a1=0,
满足an+1+an=1,
则当n是奇数时,an=1,
当n是偶数时,an=0,
则S2015=1008,
故选:C
点评:
本题主要考查数列和的计算,根据数列的递推关系求出数列项的特点是解决本题的关键.
二.填空题(共8小题)
17.(2008•上海)已知无穷数列{an}前n项和,则数列{an}的各项和为 ﹣1
考点:
数列递推式;极限及其运算.菁优网版权所有
专题:
计算题.
分析:
若想求数列的前N项和,则应先求数列的通项公式an,由已知条件,结合an=Sn﹣Sn﹣1可得递推公式,因为是求无穷递缩等比数列的所有项的和,故由公式S=即得
解答:
解:由可得:(n≥2),
两式相减得并化简:(n≥2),
又,
所以无穷数列{an}是等比数列,且公比为﹣,
即无穷数列{an}为递缩等比数列,
所以所有项的和S=
故答案是﹣1
点评:
本题主要借助数列前N项和与项的关系,考查了数列的递推公式和无穷递缩等比数列所有项和公式,并检测了学生对求极限知识的掌握,属于一个比较综合的问题.
18.(2002•上海)若数列{an}中,a1=3,且an+1=an2(n∈N*),则数列的通项an= .
考点:
数列递推式.菁优网版权所有
专题:
计算题;压轴题.
分析:
由递推公式an+1=an2多次运用迭代可求出数列an=an﹣12=an﹣24=…=a12n﹣1
解答:
解:因为a1=3
多次运用迭代,可得an=an﹣12=an﹣24=…=a12n﹣1=32n﹣1,
故答案为:
点评:
本题主要考查利用迭代法求数列的通项公式,迭代中要注意规律,灵活运用公式,熟练变形是解题的关键
19.(2015•张掖二模)数列{an}满足a1=3,﹣=5(n∈N+),则an= .
考点:
数列递推式;等差数列的通项公式.菁优网版权所有
专题:
计算题.
分析:
根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.
解答:
解:∵根据所给的数列的递推式
∴数列{}是一个公差是5的等差数列,
∵a1=3,
∴=,
∴数列的通项是
∴
故答案为:
点评:
本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.
20.(2015•历下区校级四模)已知数列{an}的前n项和Sn=n2﹣2n+2,则数列的通项an= .
考点:
数列递推式.菁优网版权所有
专题:
计算题.
分析:
由已知中数列{an}的前n项和Sn=n2﹣2n+2,我们可以根据an=求出数列的通项公式,但最后要验证n=1时,是否满足n≥2时所得的式子,如果不满足,则写成分段函数的形式.
解答:
解:∵Sn=n2﹣2n+2,
∴当n≥2时,
an=Sn﹣Sn﹣1=(n2﹣2n+2)﹣[(n﹣1)2﹣2(n﹣1)+2]=2n﹣3
又∵当n=1时
a1=S1=1≠2×1﹣3
故an=
故答案为:
点评:
本题考查的知识点是由前n项和公式,求数列的通项公式,其中掌握an=,及解答此类问题的步骤是关键.
21.(2015春•邢台校级月考)已知数列{an}中,,则a16= .
考点:
数列递推式.菁优网版权所有
专题:
计算题.
分析:
由,可分别求a2,a3,a4,从而可得数列的周期,可求
解答:
解:∵,
则=﹣1
=2
=
∴数列{an}是以3为周期的数列
∴a16=a1=
故答案为:
点评:
本题主要考查了利用数列的递推公式求解数列的项,其中寻求数列的项的规律,找出数列的周期是求解的关键
22.(2014春•库尔勒市校级期末)已知数列{an}的通项公式an=,若它的前n项和为10,则项数n为 120 .
考点:
数列递推式;数列的求和.菁优网版权所有
专题:
计算题.
分析:
由题意知an=,所以Sn=(﹣)+(﹣)+()=﹣1,再由﹣1=10,可得n=120.
解答:
解:∵an==
∴Sn=(﹣)+(﹣)+()
=﹣1
∴﹣1=10,解得n=120
答案:120
点评:
本题考查数列的性质和应用,解题时要认真审题,仔细解答.
23.(2012•黑龙江)数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为 1830 .
考点:
数列递推式;数列的求和.菁优网版权所有
专题:
计算题;压轴题.
分析:
令bn+1=a4n+1+a4n+2+a4n+3+a4n+4,则bn+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=bn+16可得数列{bn}是以16为公差的等差数列,而{an}的前60项和为即为数列{bn}的前15项和,由等差数列的求和公式可求
解答:
解:∵,
∴
令bn+1=a4n+1+a4n+2+a4n+3+a4n+4,a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,
a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,
则bn+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣1+a4n+16=bn+16
∴数列{bn}是以16为公差的等差数列,{an}的前60项和为即为数列{bn}的前15项和
∵b1=a1+a2+a3+a4=10
∴=1830
点评:
本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列
24.(2012•浙江模拟)已知数列{an},{bn}满足a1=,an+bn=1,bn+1=(n∈N*),则b2012= .
;
考点:
数列递推式.菁优网版权所有
专题:
综合题.
分析:
根据数列递推式,判断{}是以﹣2为首项,﹣1为公差的等差数列,即可求得,故可求结论.
解答:
解:
∵an+bn=1,bn+1=
∴bn+1==
∴bn+1﹣1=
∴﹣=﹣1
∵=﹣2
∴{}是以﹣2为首项,﹣1为公差的等差数列
∴
∴
∴b2012=
故答案为:
点评:
本题考查数列递推式,解题的关键是判定{}是以﹣2为首项,﹣1为公差的等差数列,属于中档题.
三.解答题(共6小题)
25.(2015•广东)设数列 {an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当a≥2时,4Sn+2+5Sn=8Sn+1+Sn﹣1.
(1)求a4的值;
(2)证明:{an+1﹣an}为等比数列;
(3)求数列{an}的通项公式.
考点:
数列递推式.菁优网版权所有
专题:
等差数列与等比数列.
分析:
(1)直接在数列递推式中取n=2,求得;
(2)由4Sn+2+5Sn=8Sn+1+Sn﹣1(n≥2),变形得到4an+2+an=4an+1(n≥2),进一步得到,由此可得数列{}是以为首项,公比为的等比数列;
(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{an}的通项公式.
解答:
(1)解:当n=2时,4S4+5S2=8S3+S1,即,
解得:;
(2)证明:∵4Sn+2+5Sn=8Sn+1+Sn﹣1(n≥2),∴4Sn+2﹣4Sn+1+Sn﹣Sn﹣1=4Sn+1﹣4Sn(n≥2),
即4an+2+an=4an+1(n≥2),
∵,∴4an+2+an=4an+1.
∵=.
∴数列{}是以为首项,公比为的等比数列;
(3)解:由(2)知,{}是以为首项,公比为的等比数列,
∴.
即,
∴{}是以为首项,4为公差的等差数列,
∴,即,
∴数列{an}的通项公式是.
点评:
本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.
26.(2014•广西)数列{an}满足a1=1,a2=2,an+2=2an+1﹣an+2.
(Ⅰ)设bn=an+1﹣an,证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.
考点:
数列递推式;等差数列的通项公式;等差关系的确定.菁优网版权所有
专题:
等差数列与等比数列.
分析:
(Ⅰ)将an+2=2an+1﹣an+2变形为:an+2﹣an+1=an+1﹣an+2,再由条件得bn+1=bn+2,根据条件求出b1,由等差数列的定义证明{bn}是等差数列;
(Ⅱ)由(Ⅰ)和等差数列的通项公式求出bn,代入bn=an+1﹣an并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{an}的通项公式an.
解答:
解:(Ⅰ)由an+2=2an+1﹣an+2得,
an+2﹣an+1=an+1﹣an+2,
由bn=an+1﹣an得,bn+1=bn+2,
即bn+1﹣bn=2,
又b1=a2﹣a1=1,
所以{bn}是首项为1,公差为2的等差数列.
(Ⅱ)由(Ⅰ)得,bn=1+2(n﹣1)=2n﹣1,
由bn=an+1﹣an得,an+1﹣an=2n﹣1,
则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,an﹣an﹣1=2(n﹣1)﹣1,
所以,an﹣a1=1+3+5+…+2(n﹣1)﹣1
==(n﹣1)2,
又a1=1,
所以{an}的通项公式an=(n﹣1)2+1=n2﹣2n+2.
点评:
本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.
27.(2012•碑林区校级模拟)在数列{an}中,a1=1,an+1=(1+)an+.
(1)设bn=,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn.
考点:
数列递推式;数列的求和.菁优网版权所有
专题:
计算题;综合题.
分析:
(1)由已知得=+,即bn+1=bn+,由此能够推导出所求的通项公式.
(2)由题设知an=2n﹣,故Sn=(2+4+…+2n)﹣(1++++…+),设Tn=1++++…+,由错位相减法能求出Tn=4﹣.从而导出数列{an}的前n项和Sn.
解答:
解:(1)由已知得b1=a1=1,且=+,
即bn+1=bn+,从而b2=b1+,
b3=b2+,
bn=bn﹣1+(n≥2).
于是bn=b1+++…+=2﹣(n≥2).
又b1=1,
故所求的通项公式为bn=2﹣.
(2)由(1)知an=2n﹣,
故Sn=(2+4+…+2n)﹣(1++++…+),
设Tn=1++++…+,①
Tn=+++…++,②
①﹣②得,
Tn=1++++…+﹣
=﹣=2﹣﹣,
∴Tn=4﹣.
∴Sn=n(n+1)+﹣4.
点评:
本题考查数列的通项公式和前n项和的求法,解题时要注意错位相减法的合理运用.
28.(2015•琼海校级模拟)已知正项数列满足4Sn=(an+1)2.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
考点:
数列递推式;数列的求和.菁优网版权所有
专题:
计算题;等差数列与等比数列.
分析:
(Ⅰ)由4Sn=(an+1)2.可知当n≥2时,4Sn﹣1=(an﹣1+1)2,两式相减,结合等差数列的通项公式可求
(Ⅱ) 由(1)知 =,利用裂项求和即可求解
解答:
解:(Ⅰ)∵4Sn=(an+1)2.
∴当n≥2时,4Sn﹣1=(an﹣1+1)2.
两式相减可得,4(sn﹣sn﹣1)=
即4an=
整理得an﹣an﹣1=2 …(4分)
又a1=1
∴an=1+2(n﹣1)=2n﹣1 …(6分)
(Ⅱ) 由(1)知 =…(8分)
所以= …(12分)
点评:
本题主要考查了利用数列的递推公式求解数列的通项公式及等差数列的通项公式、数列的裂项求和方法的应用
29.(2015•揭阳校级三模)已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令,{cn}的前20项和T20=330.数列{bn}满足bn=2(a﹣2)dn﹣2+2n﹣1,a∈R.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn+1≤bn,n∈N*,求a的取值范围.
考点:
数列递推式;等差数列的性质.菁优网版权所有
专题:
综合题;等差数列与等比数列.
分析:
(Ⅰ)利用T20=330,求出公差,即可求数列{an}的通项公式;
(Ⅱ)先求出bn,再根据bn+1≤bn,n∈N*,结合函数的单调性,即可求a的取值范围.
解答:
解:(Ⅰ)设等差数列的公差为d,
因为,
所以T20=﹣S1+S2﹣S3+S4+…+S20=330,
则a2+a4+a6+…+a20=330…(3分)
则
解得d=3
所以an=3+3(n﹣1)=3n…(6分)
(Ⅱ) 由(Ⅰ)知bn=2(a﹣2)3n﹣2+2n﹣1bn+1﹣bn=2(a﹣2)3n﹣1+2n﹣[2(a﹣2)3n﹣2+2n﹣1]
=4(a﹣2)3n﹣2+2n﹣1=
由bn+1≤bn⇔…(10分)
因为随着n的增大而增大,
所以n=1时,最小值为,
所以…(12分)
点评:
本题考查数列的通项,考查数列与不等式的联系,考查学生的计算能力,属于中档题.
30.(2015•惠州模拟)已知数列{an}中,a1=3,前n和Sn=(n+1)(an+1)﹣1.
①求证:数列{an}是等差数列
②求数列{an}的通项公式
③设数列{}的前n项和为Tn,是否存在实数M,使得Tn≤M对一切正整数n都成立?若存在,求M的最小值,若不存在,试说明理由.
考点:
数列递推式;等差数列的通项公式;等差关系的确定;数列的求和.菁优网版权所有
专题:
综合题;等差数列与等比数列.
分析:
①由Sn=(n+1)(an+1)﹣1,得,两式相减后整理可得nan+1=(n+1)an﹣1(1),则(n+1)an+2=(n+2)an+1﹣1(2),两式相减整理后利用等差中项公式可判断;
②由①知,nan+1=(n+1)an﹣1,可求得a2=2a1﹣1=5,又a1=3可求公差,从而可得an;
③使得Tn≤M对一切正整数n恒成立,等价于Tn的最大值小于等于M,利用裂项相消法可求得Tn,进而可求得其最大值;
解答:
解:①∵Sn=(n+1)(an+1)﹣1,
∴,
∴an+1=Sn+1﹣Sn=,
整理得,nan+1=(n+1)an﹣1…(1)
∴(n+1)an+2=(n+2)an+1﹣1…(2)
(2)﹣(1),得(n+1)an+2﹣nan+1=(n+2)an+1﹣(n+1)an,
∴2(n+1)an+1=(n+1)(an+2+an),
∴2an+1=an+2+an,
∴数列{an}为等差数列.
②由①知,nan+1=(n+1)an﹣1,得a2=2a1﹣1=5,
又a1=3,∴a2﹣a1=2,即公差为2,
an=3+(n﹣1)×2=2n+1;
③∵=(),
∴
=,
又当n∈N*时,,
要使得Tn≤M对一切正整数n恒成立,只要M≥,
∴存在实数M使得Tn≤M对一切正整数n都成立,M的最小值为.
点评:
本题考查等差关系的确定、等差数列的通项公式及数列求和,恒成立问题常转化为函数最值解决,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善
教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。
收集于网络,如有侵权请联系管理员删除
展开阅读全文