1、此文档仅供收集于网络,如有侵权请联系网站删除第六章 不等式小 结学习目标1. 理解不等式的性质,并能证明;2. 掌握两个正数的算术平均数不小于它们的几何平均数定理,并会简单地应用;3. 掌握证明不等式的常用方法,如:比较法、分析法、综合法、反证法等等。4. 培养我们的逻辑思维能力、分析问题和解决问题的能力。学习过程一、本章的基本内容1不等式的性质 定理1:如果ab,那么ba;如果bb;定理2:如果ab且bc,那么ac定理3:如果,那么 (加法单调性)反之亦然推论1:如果且,那么(相加法则)推论2:如果且,那么(相减法则)定理4:如果且, 那么;如果且那么(乘法单调性)推论1 : 如果且,那么(
2、相乘法则)推论1:(补充)如果且,那么(相除法则)推论2 如果, 那么 定理5:如果,那么 2几个重要不等式 定理1: 如果,那么(当且仅当时取“=”)定理2:如果a,b是正数,那么(当且仅当时取“=”) 定理3:如果,那么,(当且仅当时取“=”)推论:如果,那么(当且仅当时取“=”)推广:(均值不等式):, 3极值定理:已知都是正数,则(1) 如果积是定值,那么当时和有最小值;(2) 如果和是定值,那么当时积有最大值。4掌握证明不等式的常用方法:比较法、分析法、综合法、反证法。5掌握几种常见的几类不等式的解法:一元一次不等式、一元二次不等式、分式不等式、高次不等式、含有绝对值的不等式、指数不
3、等式、对数不等式等等。不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明不等式的应用范围十分广泛,它始终贯串在整个中学数学之中诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。二、知识整合 1解不等式的核心问题是不等式的同解变形,不等式
4、的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化 来源:学科网2整式不等式(主要是一次、二次不等式、可以因式分解的高次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化3在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形
5、象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰 4证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法要依据题设、结论的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点比较法的一般步骤是:作差(商)变形判断符号(值)5证明不等式的方法多样,内容丰富、技巧性较强在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者
6、是“执果索因”,后者是“由因导果”,证明时往往联合使用分析法、综合法,两面夹击,相辅相成,达到欲证的目的6不等式应用问题体现了一定的综合性这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要恰当拼凑,使之符合这三个条件利用不等式解应用题的基本步骤:(1)审题,(2)建立不等式模型,(3)解数学问题,(4)作答。7通过不等式的基本知识、基本方法在代数、三角函数、数列(包括复数、立体几何、解析几何)等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的力在
7、应用不等式的基本知识、方法、思想解决问题的过程中,提高我们的数学素质及创新意识三、方法技巧1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解。2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活用。3不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。如运用放缩法证明不等式时要注意调整放缩的度。4根据题目结构特点,执果索因,往往是有效的思维方法。四、例题分析例1.设集合M(x,y)| x(y+3)|y1|y+3,-,若(a,b)M,且对M中的其它元素(c,d),总
8、有ca,则a=_分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口怎样理解“对M中的其它元素(c,d),总有ca”?M中的元素又有什么特点?来源:Zxxk.Com解析:依题可知,本题等价于求函数x=f(y)=(y+3)|y-1|+(y+3)在 -时的最小值.(1)当 -时,来源:Zxxk.Com,来源:学*科(2)当1y3时,所以当y=1时,= 4而 ,因此当y时,x有最小值,即.探索发现:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示其数学实质即求集合M中的元素满足关系式“x(y+3)|y1|y+3,-”的所有点中横坐标最小的a的值.例2数列由下列条件确定
9、:(1)证明:对于,(2)证明:对于证明:(1)及知, 从而(2)当时,=。例3解关于的不等式:来源:Z.xx.k.Com分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。本题的关键不是对参数进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。解:当来源:Zxxk.Com;。例4若二次函数y=f(x)的图象经过原点,且1f(-1)2,3f(1)4,求f(-2)的范围分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组)由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来即可求得f(-2)的表达式,然后
10、依题设条件列出含有f(-2)的不等式(组),即可求解来源:学+科+网Z+X+X+K解析:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx于是解法一:(利用基本不等式的性质)不等式组()变形得()所以f(-2)的取值范围是6,10解法二(利用方程的思想)又f(-2)=4a-2b=3f(-1)+f(1),而来源:学科网ZXXK1f(-1)2,3f(1)4, 所以 33f(-1)6 +得43f(-1)+f(1)10,即6f(-2)10解法三:(数形结合)(这种解法需要学习了线性规划后才适合)k建立直角坐标系aob,作出不等式组()所表示的区域,如图6中的阴影部分因为f(-2)=4a
11、-2b,所以4a-2b-f(-2)=0表示斜率为2的直线系如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10即f(-2)的取值范围是:6f(-2)10探索发现:(1)在解不等式时,要求作同解变形要避免出现以下一种错解:2b,84a12,-3-2b-1,所以 5f(-2)11来源:学科网(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题若长期这样思考问题,数学的素养一定会迅速提高探索发现:从上述几个例
12、子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径例5.城市2009年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?解:设2009年末的汽车保有量为,以后每年末的汽车保有量依次为,每年新增汽车万辆。由题意得w.w.w.k.s.5.u.c.o.m 第六章 不等式单元测试一、选择题(本大题共12小题,每小题5分,共60分)1若ab0,则( )A B01Cabb2 D2若|ac|b,则(
13、)A|a|b|-|c| B|a|c|-|b|C|a|b|-|c| D|a|c|-|b|3设a=,则a,b,c的大小顺序是( )Aabc BacbCcab Dbca4设b0a,dc0,则下列各不等式中必成立的是( )Aacbd BCa+cb+d Da-cb-d5下列命题中正确的一个是( )A成立当且仅当a,b均为正数B成立当且仅当a,b均为正数Clogab+logba2成立当且仅当a,b(1,+)D|a+|2成立当且仅当a06函数的定义域是( )Ax1或x3 Bx-2或x1Cx-2或x3 Dx0的解集是,则a+b=_。14实数x,y0,且x+2y=4,那么log2x+log2y的最大值是,此时x
14、=,y=。15方程x2-2x+lg(2a2-a)=0又一正根一负根,则实数a的取值范围是 。16建造一个容积8m3,深为2m长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造价为_元。三、解答题(本大题共6题,共74分)17(12分)已知a,b0,且a+b=1,求证:(ax+by)(ay+bx)xy18(12分)解关于x的不等式(a0且a1)19(12分)已知xy0,且xy=1,若x2+y2a(x-y)恒成立,求实数a的取值范围。20(12分)解关于x的不等式。21(12分)设f(x)是定义在-1,1上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而
15、当x2,3时,g(x)=-x2+4x-4。(1)求f(x)的解析式;(2)对于任意的x1,x20,1且x1x2,求证:|f(x2)-f(x1)|1时,原不等式的解集为:;当0ay0,xy=1t0,x2+y2=(x-y)2+2xy=t2+2原题意对t0恒成立。20(12分)解:a0,原不等式当,即0a,原不等式的解集为;当,即,则原不等式的解集为;当,即,则原不等式的解集为21(12分)解:(1)由题意知f(x+1)=g(1-x)推出f(x)=g(2-x)当-1x0时,22-x3,f(x)= -(2-x)2+4(2-x)-4= -x2当0x1时,-1-x0f(-x)=-x2,由于f(x)是奇函数f(x)=x2(2)当x1,x20,1且x1x2时,0x1+x22|f(x2)-f(x1)|=|x22-x12|=|(x2-x1)(x2+x1)|2|x2-x1|(3)当x1,x20,1且x1x2时,0x121,0x221-1x22-x121即|x22-x12|1|f(x2)-f(x1)|=|x22-x12|122(14分)解:由题意得xy+x2=8,。于框架用料长度为当(+)x=,即x=8-4时等号成立.此时,x2.343,y=22.828。故当x为2.343m,y为2.828m时,用料最省。只供学习与交流