收藏 分销(赏)

哈尔滨工业大学高等数学期末考试试题和答案说课材料.doc

上传人:精*** 文档编号:3714870 上传时间:2024-07-15 格式:DOC 页数:7 大小:397.50KB
下载 相关 举报
哈尔滨工业大学高等数学期末考试试题和答案说课材料.doc_第1页
第1页 / 共7页
哈尔滨工业大学高等数学期末考试试题和答案说课材料.doc_第2页
第2页 / 共7页
哈尔滨工业大学高等数学期末考试试题和答案说课材料.doc_第3页
第3页 / 共7页
哈尔滨工业大学高等数学期末考试试题和答案说课材料.doc_第4页
第4页 / 共7页
哈尔滨工业大学高等数学期末考试试题和答案说课材料.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、哈尔滨工业大学高等数学期末考试试题和答案高等数学期末考试试题(4)一、 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,则 2、设,则 3、曲面在点处的切平面方程为 4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数在处收敛于 ,在处收敛于 5、设为连接与两点的直线段,则 以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级二、 解下列各题:(本题共5小题,每小题7分,满分35分)1、 求曲线在点处的切线及法平面方程2、 求由曲面及所围成的立体体积3、 判定级数是否收敛?如果是收敛的,是绝对收敛还是条件

2、收敛?4、 设,其中具有二阶连续偏导数,求5、 计算曲面积分其中是球面被平面截出的顶部三、 (本题满分9分) 抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值 四、 (本题满分10分)计算曲线积分,其中为常数,为由点至原点的上半圆周五、 (本题满分10分)求幂级数的收敛域及和函数六、 (本题满分10分)计算曲面积分,其中为曲面的上侧七、 (本题满分6分)设为连续函数,其中是由曲面与所围成的闭区域,求 2012高等数学期末考试试题【A卷】参考解答与评分标准 2009年6月一、 填空题【每小题4分,共20分】 1、; 2、;3、; 4、3,0; 5、.二、 试解下列各题【每小题7

3、分,共35分】1、解:方程两边对求导,得, 从而,.【4】该曲线在处的切向量为.【5】故所求的切线方程为.【6】法平面方程为 即 .【7】、解:,该立体在面上的投影区域为.【2】故所求的体积为.【7】、解:由,知级数发散【3】 又,.故所给级数收敛且条件收敛【7】、解:, 【3】【7】、解:的方程为,在面上的投影区域为又,.【】故.【7】三、【9分】解:设为该椭圆上的任一点,则点到原点的距离为【1】令,则由,解得,于是得到两个可能极值点【7】又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得故 【9】四、【10分】 解:记与直线段所围成的闭区域为,则由格林公式,得【5】而【8】 【10】五、【10分】解:,收敛区间为 【2】又当时,级数成为,发散;当时,级数成为,收敛【4】故该幂级数的收敛域为【5】令(),则, () 【8】于是,().【10】六、【10分】解:取为的下侧,记与所围成的空间闭区域为,则由高斯公式,有. 【5】 .【7】而. 【9】. 【10】七、【6分】解:. 【2】. 【4】故 【6】

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服