1、 七年级下册数学第五章 相交线与平行线 5.1 相交线 对顶角相等。 过一点有且只有一条直线与已知直线垂直。 连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。 过两点有且只有一条直线 两点之间线段最短余角:两个角的和为90度,这两个角叫做互为余角。补角:两个角的和为180度,这两个角叫做互为补角。对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。同位角:在“三线八角”中,位置相同的角,就是同位角。内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角
2、,就是同旁内角。5.2 平行线 经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 直线平行的条件: 两条直线被第三条直线所截,如果同位角相等,那么两直线平行。 两条直线被第三条直线所截,如果内错角相等,那么两直线平行。 两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。 5.3 平行线的性质 同角或等角的补角相等 同角或等角的余角相等 过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的所有线段中,垂线段最短 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 如果两条直线都和第三条直线平行,这两条直线也
3、互相平行 同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行 两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补 两条平行线被第三条直线所截,同位角相等。 两条平行线被第三条直线所截,内错角相等。 两条平行线被第三条直线所截,同旁内角互补。 判断一件事情的语句,叫做命题。 第六章 实数 平方根 如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,2是根指数。 a的算术平方根读作“根号a”,a叫做被开方数。 0的算术平方根是0。 如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。 求一个数a的平方根的运算,叫做开平方。 立方根 如果
4、一个数的立方等于a,那么这个数叫做a的立方根或三次方根。 求一个数的立方根的运算,叫做开立方。 实数 无限不循环小数又叫做无理数。 有理数和无理数统称实数。 第七章平面直角坐标系 -3 -2 -1 0 1 ab1-1-2-3P(a,b)Yx(一)有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b);注意:a、b的先后顺序对位置的影响。2、坐标平面上的任意一点P的坐标,都和惟一的一对 有序实数对()一一对应;其中,为横坐标,为纵坐标坐标;3、轴上的点,纵坐标等于0;轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限;(二) 平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂
5、直、原点重合的数轴,组成平面直角坐标系。 1.历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;2.构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向象限横坐标纵坐标第一象限正正第二象限负正第三象限负负第四象限正负两坐标轴的交战为平面直角坐标系的原点3.各种特殊点的坐标特点。象限:坐标轴上的点不属于任何象限 第一象限:x0,y0 第二象限:x0第三象限:x0,y0,yb,bc,那么ac(不等式的传递性).性质2:如果ab,那么a+cb+c(不等式的可加性).性质3:如果ab,c0,那么acbc;如果ab,c0,acb,
6、cd,那么a+cb+d. (不等式的加法法则)性质5:如果ab0,cd0,那么acbd. (可乘性)性质6:如果ab0,nN,n1,那么anbn,且.当0n等于b cb 那么c大于等于a性质7不一定成立,如a取值28,b取值3,c取值19,则c不大于a4、不等式组:几个含有相同未知数的不等式联立起来,叫做不等式组5、解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”若两个未知数
7、的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为axb,或axb。此乃“相交取中”若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空” 第十章 数据的收集、整理与描述1、全面调查:考察全体对象的调查叫做全面调查,也叫普查。2、抽样调查:只抽取一部分对象进行调查,然后根据数据推断全体对象的情况。要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。3、直方图的绘制方法:集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。将数据分成若干组,并做好记号。分组的数量在512之间较为适宜。计算组距的宽度。用组数去除最大值和最小值之差,求出组距的宽度。计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。统计各组数据出现频数,作频数分布表。作直方图。以组距为底长,以频数为高,作各组的矩形图。