1、选修4-4数学知识点一、选考内容坐标系与参数方程高考考试大纲要求:1坐标系: 理解坐标系的作用. 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2参数方程: 了解参数方程,了解参数的意义. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、知识归纳总结:1伸缩变换:设点是平面直角坐标系中的任
2、意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点,叫做极点;自极点引一条射线叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。3点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为. 极坐标与表示同一个点。极点的坐标为.4.若,则,规定点与点关于极点对称,即与表示同一点。如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的。 5极坐标与
3、直角坐标的互化:6。圆的极坐标方程:在极坐标系中,以极点为圆心,为半径的圆的极坐标方程是 ; 在极坐标系中,以 为圆心, 为半径的圆的极坐标方程是 ;在极坐标系中,以 为圆心,为半径的圆的极坐标方程是;7.在极坐标系中,表示以极点为起点的一条射线;表示过极点的一条直线.在极坐标系中,过点,且垂直于极轴的直线l的极坐标方程是.8参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。9圆的参数方程可表示为. 椭圆的参数方程可表示为. 抛物线的参数方程可表示为. 经过点,倾斜角为的直线的参数方程可表示为(为参数).10在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致.