1、总分 150分 时间 120分钟 班级 _ 学号 _ 得分_(一) 选择题(12*5=60分)1.【湖北省襄阳市第四中学2022-2021学年高三阶段性测试,理8】已知双曲线,是实轴顶点,是右焦点,是虚轴端点,若在线段上(不含端点)存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率的取值范围是( ) A B. C. D. 2. 【广东省阳江市阳东县阳东一中、广雅中学2021届高三第一次,理7】已知点是抛物线上的 一个动点,则点到点的距离与点到该抛物线准线的距离之和的最小值为( )A B C D3.【浙江省嘉兴市第一中学2021届高三上学期期中考试,理8】已知点P是双曲线C:左支上一点
2、,F1,F2是双曲线的左、右两个焦点,且PF1PF2,PF2与两条渐近线相交M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是( )A B2 C Da2=(b-a)2即b=2a,双曲线的离心率是,故选A考点:双曲线的简洁性质4.【吉林试验中学2021届高三上学期第三次质量检测,理12】如图,等腰梯形中, 且,.以为焦点,且过点的双曲线的离心率为,以为焦点,且过点的椭圆的离心率为,则的取值范围为( ) A. B. C. D. 5.【广东省韶关市十校2021届高三10月联考,理7】已知椭圆的左、右焦点分别为、,点在椭圆上,则的最大值是( )A. ;B;C.;D. 故选考点:椭圆的定义,
3、基本不等式6.【浙江省重点中学协作体2021届第一次适应性训练,理8】设点是椭圆上一点,分别是椭圆的左、右焦点,为的内心,若,则该椭圆的离心率是( )A B C D7.【浙江省温州市十校联合体2021届高三上学期期中联考,理6】设M(x0,y0)为抛物线C:x28y上一点,F为抛物线C的焦点,以F为圆心,|FM|为半径的圆和抛物线的准线相交,则y0的取值范围是 ( )A.(0,2) B.0,2 C.(2,) D.2,)8.【山西省大同市2021届高三学情调研测试数学,理2】抛物线的准线方程是 ( ) A y=-1 By=-2 Cx=-1 Dx=-29.【山西省大同市2021届高三学情调研测试数
4、学,理11】已知椭圆的方程为,双曲线的方程为,与的离心率之积为则的渐近线方程为( )A B C D 10.【湖南省娄底市高中名校2021届高三9月联考,理9】如图,过原点的直线与圆交于两点,点在第一象限,将轴下方的图形沿轴折起,使之与轴上方的图形成直二面角,设点的横坐标为,线段的长度记为,则函数的图像大致是( ) 【答案】B11.【河北省唐山市第一中学2021届高三上学期期中考试,理10】已知是抛物线上的一个动点,则点到直线和的距离之和的最小值是()1 2 3 4 12.【浙江省桐乡第一中学等四校2021届高三上学期期中联考,理8】点是双曲线 与圆的一个交点,且,其中, 分别为双曲线的左右焦点
5、,则双曲线的离心率为( )A. B. C. D.(二) 填空题(4*5=20分)13.【浙江省温州市十校联合体2021届高三上学期期中联考,理15】过双曲线的左焦点F作圆的切线,切点为E,延长FE交双曲线右支于点P,若为的中点,则双曲线的离心率为_ 考点:1.双曲线的几何性质;2.直线与圆的位置关系;3.勾股定理.14.【辽宁师范高校附属中学2021届高三上学期期中考试,理15】过点作斜率为的直线与椭圆:相交于,若是线段的中点,则椭圆的离心率为 15.【四川省成都七中2021届数学阶段性测试 ,理12】抛物线和有一个交点P,且两曲线在P点的切线相互垂直,则a的值为 .16.【浙江省嘉兴市第一中
6、学2021届高三上学期期中考试 ,理15】设抛物线的焦点为F,过点F的直线与抛物线交于两点,过的中点M作准线的垂线与抛物线交于点P,若,则弦长等于_ (三) 解答题(6*12=72分)17. 【浙江省桐乡第一中学等四校2021届高三上学期期中联考,文21】已知椭圆:的一个焦点与抛物线的焦点相同,在椭圆上,过椭圆的右焦点作斜率为的直线与椭圆交于两点,直线分别交直线于点,线段的中点为,记直线的斜率为.(1)求椭圆方程;(2)求的取值范围.18. 【山西省山西高校附中中学2022-2021年高三第一学期10月月考,理20】如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、三点互
7、不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值 19. 【河南省中原名校2021届高三上学期第一次摸底考试,理24】己知曲线与x袖交于A,B两点,点P为x轴上方的一个动点,点P与A,B连线的斜率之积为-4(I)求动点P的轨迹的方程;(Il)过点B的直线与,分别交于点M ,Q(均异于点A,B),若以MQ为直径的圆经过点A,求AMQ的面积20. 【河南省名校2021届高三上学期期中,理20】设椭圆 的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率21. 【辽宁师范高校附属中学2021届高三上学期期中考试,理21】已知椭圆的右焦点为,离心率为 ()若,求椭圆的方程;()设直线与椭圆相交于两点,若,且,求的最小值【答案】()()最小值22【浙江省温州市十校联合体2021届高三上学期期中联考,理21】已知椭圆:的离心率,并且经过定点.()求椭圆的方程;()设为椭圆的左右顶点,为直线上的一动点(点不在x轴上),连交椭圆于点,连并延长交椭圆于点,试问是否存在,使得成立,若存在,求出的值;若不存在,说明理由.