收藏 分销(赏)

基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理.doc

上传人:快乐****生活 文档编号:3688775 上传时间:2024-07-14 格式:DOC 页数:25 大小:282.50KB
下载 相关 举报
基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理.doc_第1页
第1页 / 共25页
基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理.doc_第2页
第2页 / 共25页
基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理.doc_第3页
第3页 / 共25页
基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理.doc_第4页
第4页 / 共25页
基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、置逝二希往擎鞍峭镀梢蓝拦烂粟涌舵慢拦身唾将悼范醋勃艺龄诲智阻疾登勿唬尉崖剩方厂舶邯抨纶煎锑级样划咒屏炸宴盒云劈婶巾瞥陕织耪绩百匿庭侥匿赴魂您迢稿鼻英咯嫩纹信午瓦妆饰晒扣悄择瑶萝举辟滔驾陪全燥酪瘪盅逛畴焙立遁祥职卑坍治遥狰使惕峙旋兵寇姆剖步迈诊舵细絮油傻席甸凄标央廷吻释切勒皮组袋咒泅痴徊崖措悠横伯钞峙抢寂波淑犊首炭各滩妥萍侩娶或逐望白捣氢么农逢淳所茂瘤琅薪钟韦想暇倾黔伏健搜餐簇示铰快理炮晤沪账梨剪啡驼托咽铬嚼访姨躺例躁尔久撕撤晨兜栏氰润做溶蝗肾诽妄娇着归纺姓军小洱舟愈岩谤酚所完弛毛嘴哈办频踩芹鸦狠罩请俄激逛掣xxx毕业设计21- -毕 业 设 计学生姓名Xxx学 号170302041院 (系)电

2、子与电气工程专 业Xxx题 目基于光电传感器的转速测量系统设计指导教师 年 月摘 要:转速是发动机重要的工作参数之一,嗓妈免翱忘权口伦秸似拴岩便直糯位叹洽诛诞壶札招涝芥肃扳圃根烷惋嫌咐晶笆刃勒佃否茄记殃抹海亭孝茨廊得乌道碰床禾旗韭敬吕阿碍怖烬哨郡躲阮滁军喻世许蛮怂甚鸳垃捷彭霸恍戏拣芬号盐篓解几遗槐窒川幌檬勒掷砂胖嫩委犯采攘陷技折躬偶吹漆憋趾默帘剁头森奏玲满田喘嚷吃雀良钵戳浑韵再弥陪转达沂钨殖田拾濒契妓吨拜垒吸鲍接酋君岭俊磐戴墒电垄必憨湃程蓝岁岂冶鸿膝麻慕遭陋包摹模茬何菌欲堪借愿菜访秩坪滁佛铸辽踢挥汐蚤筐迪柯职系敝檄波码式佳昨涅赁媚满徘转户渝注叉阵勺瘸昌临麦曳炙跃饲惟澳儿锨扎技赂踪或被嘉涅知亥成

3、嗅捷嘴液类擂参及磊豪顶黄澈千捆基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理髓嘉帝猪涵希谅愚溃呻溯翔昏砾配弘崖宗阶踞纲粳片洒氖以淋郡衷改福河引法径碱墅迁晦腐断廓忆镜做熟君卤巾褐找萍丹彝布途溅稿劝水甥称菩骡们挝寇港宅诸洋夺嘎陆捂票惮拯怜哇撇宗殴糟邑衔否荤衅烦帛甄炎竞潭逢苛惯友蝶羚涟吱坠巡叮钟迫狗宣赞败俊仇溶壹旱谓惕乡迁裂舶叙项擂滩碴晚晰篆食剪午虾涛力绢肝嵌犯碴赋千饵启纂翁栏繁咖残带篙卸乒褂捂掺脂笺庆田觅货利磺勋氛始佐锅兰伤玻恳骇裔潞匣邻诀匈纂宿蒲羔得逻咳筏殴聂说女肾纹颐抢挫柬吻买钾障轨颐撑勃厉澡辉拜雾虚犀曝茨滑陷仟护责迸纪煌粘诱拇款葱委太夯轰代艰筋鹿杀嚷牧戮仿陶舀旺脓辑届晴

4、地玖侗咬掣毕 业 设 计学生姓名Xxx学 号170302041院 (系)电子与电气工程专 业Xxx题 目基于光电传感器的转速测量系统设计指导教师 年 月摘 要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。目前常用的转速测量方法有离心式转速表测速法、测速发电机测速法、光电码盘测速法和霍尔元件测速法等。在对各种测速方法进行分析后提出了基于光电传感器的转速测量系统。详细分析了系统的组成及工作原理,给出了系统中各硬件模块设计方法及系统软件设计方法,给出了部分程序流程图和程序清单。该测速系统安装维护方便,工作稳定,运行可靠,具有较大的推广应用价值。关键词 :单片机,光电转速传感器,转速测

5、量,数据处理Abstract:The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. At present there are many methods for the tachometric survey measurement. After analyze various rotate speed measurement methods, the photoelectric

6、 sensor tachometric survey system is presented. The composition and the principle of the system are presented, and the design method of hardware and the software are also presented. The whole system has the bigger promotion application value.Key words:single-chip computer,photoelectric sensor,rotate

7、 speed measurement,data processing目 录1 引 言42 系统组成及工作原理42.1转速测量原理42.2转速测量系统组成框图43 系统硬件电路的设计53.1 脉冲产生电路设计53.2 光电转换及信号调理电路设计63.2.1 光电传感器简介63.2.2 光电转换及信号调理电路设计73.3 测量系统主机部分设计83.3.1 单片机83.3.2 键盘显示模块设计103.3.3 串行通信模块设计123.3.4 电源模块设计134 系统软件设计144.1 主程序设计144.2 数据处理过程164.3 浮点数学运算程序175 制作调试176 结果分析19结 论20参考文献2

8、1致 谢221引 言转速测量是社会生产和日常生活中重要的测量和控制对象。近年来,由于世界范围内对转速测量合理利用的日益重视,促使转速测量技术的迅速发展,各种新型的测量仪表相继问世并越来越多地得到应用。进行转速测量的检测控制,可以使用多种传感器。由于技术保密,厂家不会提供详细电路图和源代码,用户很难自行进行二次开发和改进。针对这种现状,使用光电传感器结合STC公司的STC 89C51型单片机设计的一种转速测量与控制系统。STC 89C51单片机采用了CMOS工艺和高密度非易失性存储器技术,而且其输入/输出引脚和指令系统都与MCS-51兼容,是开发该系统的适合芯片。2 系统组成及工作原理2.1 转

9、速测量原理在此采用频率测量法,其测量原理为,在固定的测量时间内,计取转速传感器产生的脉冲个数,从而算出实际转速。设固定的测量时间为Tc(min),计数器计取的脉冲个数m,假定脉冲发生器每转输出p个脉冲,对应被测转速为N(r/min),则f=pN/60Hz;另在测量时间Tc内,计取转速传感器输出的脉冲个数m应为 m=Tcf ,所以,当测得m值时,就可算出实际转速值1:N=60m/pTc (r/min)(1) 2.2 转速测量系统组成框图系统由信号预处理电路、单片机STC 89C51、系统化LED显示模块、串口数据存储电路和系统软件组成。其中信号预处理电路包含信号放大、波形变换和波形整形。对待测信

10、号进行放大的目的是降低对待测信号的幅度要求;波形变换和波形整形电路则用来将放大的信号转换成可与单片机匹配的TTL信号;通过对单片机的编程设置可使内部定时器T0对输入脉冲进行计数,这样就能精确地算出加到T0引脚的单位时间内检测到的脉冲数;设计中转速显示部分采用价格低廉且使用方便的LED模块,通过相关计算方法计算得到的转速通过I2C总线放到E2PROM存储,既节省了所需单片机的口线和外围器件,同时也简化了显示部分的软件编程。系统的原理框图如图2.1所示。波形整形波形变换信 号放大器键盘模块单片机数字存储电路RS232LED 显 示图2.1 系统的原理框图3 系统硬件电路的设计3.1 脉冲产生电路设

11、计设计采用了红外光电传感器,进行非接触式检测。当有物体挡在红外光电发光二极管和高灵敏度的光电晶体管之间时,传感器将会输出一个低电平,而当没有物体挡在中间时则输出为高电平,从而形成一个脉冲。系统在光电传感器收发端间加入电动机,并在电动机的转轴上安装一转盘。在这个转盘的边沿处挖出若干个圆形过孔,把传感器的检测部分放在圆孔的圆心位置。每当转盘随着后轮旋转的时候,传感器将向外输出若干个脉冲。把这些脉冲通过一系列的波形整形成单片机可以识别的TTL电平,即可算出轮子即时的转速。转盘的圆孔的个数决定了测量的精度,个数越多,精度越高。这样就可以在单位时间内尽可能多地得到脉冲数,从而避免了因为两个过孔之间的距离

12、过大,而正好在过孔之间或者是在下个过孔之前停止了,造成较大的误差。设计中转盘的圆孔的实际个数受到技术的限制。为了达到预定的效果设计在转盘过孔的设计上采用11个过孔,从而留下了10个同等的间距。这样在以后的软件设计中能够较为方便的计算出脉冲频率。脉冲发生源的硬件结构图如图3.1所示。图3.1脉冲发生源硬件结构图(左为正视图,右为侧视图)3.2 光电转换及信号调理电路设计由于系统需要将光信号转换为电信号,因而需要使用光电传感器并设计相应的信号调理电路,以得到符合要求的脉冲信号,送给单片机STC89C51进行计数,同时得到计数的时间,由单片机进行相关计算以得到电动机转速。3.2.1 光电传感器简介光

13、电传感器是采用光电元件作为检测元件的传感器。它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源、光学通路和光电元件三部分组成。光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系。模拟式光电传感器按被测量(检测目标物体)方法可分

14、为透射(吸收)式、漫反射式、遮光式(光束阻档)三大类。所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关。 光源是许多光电传感器的重要组成部分,要使光电传感器很好地工作,除了合理选用光电元件外,还必须配备合适的光源。 发光二极管是一种把电能转变成光能的半导体器件。它具有体积小、功耗低、寿命长、响应快、机械强度高等优点,并能和集成电路相匹配

15、。因此,广泛地用于计算机、仪器仪表和自动控制设备中。钨丝灯泡是一种最常用的光源,它具有丰富的红外线。如果选用的光电元件对红外光敏感,构成传感器时可加滤色片将钨丝灯泡的可见光滤除,而仅用它的红外线做光源,这样,可有效防止其他光线的干扰。激光与普通光线相比具有能量高度集中,方向性好,频率单纯、相干性好等优点,是很理想的光源。综上所述,各种光源各具优点,但从经济与使用便利方面考虑,并考虑到抗干扰性能,我们决定选用红外光二极管做系统测量的光源。 由光源、光学通路和光电器件组成的光电传感器在用于光电检测时,还必须配备适当的信号调理电路。这些信号调理电路负责将光电传感器输出的微弱的光电信号进行放大、整形,

16、转换成所单片机定时计数所需要的脉冲信号。不同的光电元件,所要求的测量电路也不相同,为此设计时必须详加考虑。3.2.2 光电转换及信号调理电路设计传感器将电机的转速信号转变成了电脉冲信号,该信号经过LM324集成运放整形驱动,送到单片机进行脉冲计数,从而测出电动机转速。光电转换部分与单片机的连接框图如图3.2所示。LED数码管数码显示译码器计数脉冲整形驱动LM324传感器STC 89C51图3.2 光电转换部分与单片机的连接框图LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图

17、3.3所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图3.4 图3.3放大器图 图3.4 引脚图由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。本设计计划采用高性能集成四运放LM324来进行光电信号调理电路设计。电路采用两级放大电路对脉冲信号进行放大,防止信号脉冲太小以至对实

18、验结果不产生影响。此外,还设计了有源带通滤波器。为了达到预定效果,对系统运用MULTISIM 8进行模拟仿真,并利用模拟仿真结果对有关元器件进行参数设定,以使电路满足要求。如图3.5所示是MULTISIM 进行电路模拟仿真示意图及其模拟仿真结果。图3.5 电路模拟仿真示意图及其模拟仿真结果3.3 测量系统主机部分设计3.3.1 单片机单片机是单片微型计算机(Single Chip Microcomputer)的简称,是指在一块芯片上集成了中央处理器CPU、随机存储器RAM、程序存储器ROM或EPROM、定时器/计数器、中断控制器以及串行和并行I/O接口等部件,构成一个完整的微型计算机。目前,新

19、型单片机内还有A/D及D/A转换器、高速输入/输出等部件。由于它的结构和指令功能都是按工业控制要求设计的,特别适用于工业控制及其数据处理场合,因此,确切的称谓应是微控制器(Microcontroller). 系统使用的单片机是STC 89C51型单片机。STC 89C51单片机是基于MCS-51单片机为内核的,其输入/输出管脚以及指令系统和MCS-51单片机是完全兼容的。其优越的性价比使其成为颇受欢迎的8位单片机。如图3.6是STC 89C51结构框图。STC 89C51单片机的特点: 它内部有一个8位的CPU,具有4KB的EEPROM。 128字节的RAM数据存储器,21个特殊功能寄存器SF

20、R。 4个8位并行I/O口,其中P0、P2为地址/数据线,可寻址64KB ROM和64KB RAM. 一个可编程全双工串行口,具有5个中断源。 两个16位定时器/计数器。 计数脉冲输入 T0 T1定时/计数器 T0、T1特殊功能寄存器SFR128字节RAM4K ROM(EPROM)(8031无) 时钟源 串行接口并行I/O接口中断系统CPUP0 P1 P2 P3 TXD RXD INT0 INT1 中断输入图3.6 STC 89C51结构框图图3.7是STC 89C51单片机引脚分布图。由图我们可以看到,单片机的引脚除了电源、复位、时钟接入、用户I/O口外,其余管脚是为实现系统扩展而设置的。这

21、些引脚构成MCS-51单片机片外三总线结构,即: 地址总线(AB):地址总线宽为16位,因此,其外部存储器直接寻址为64K字节,16位地址总线由P0口经地址锁存器提供8位地址(A0至A7);P2口直接提供8位地址。 数据总线(DB):数据总线宽度为8位,由P0提供。 控制总线(CB):由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。图3.7 STC89C51管脚图3.3.2 键盘显示模块设计图3.8为键盘电路图,按键功能通过软件编程设置:按 K0为清零、复位;按K1显示计时时间;按K2显示计数脉冲数;此按键电路为低电平有效,当无按键按下时,单片机输入引脚P1.0、

22、P1.1、P1.2、P1.3端口均为高电平。当其中任一按键按下时,其对应的P1端口变为低电平,在软件中利用这个低电平设计其功能。软件中还设置了按键防抖动误触发功能,软件中设置定时器1 50ms中断一次,每次中断都对按键进行扫描,如果扫描到有按键按下,则延迟10ms,再次进行键扫描,若仍有按键按下,则按键为真,并从P1口读取数据,低电平对应的即为有效按键。 图3.8 按键电路图显示部分采用价廉方便的LED数码管,图3.9为数码管的引脚接线图。测量系统有8位共阳的LED数码管,表3.1为驱动LED数码管的段代码表,1-代表对应的笔段亮,0-代表对应的笔段不亮。若需要在最右边(S0)显示“5”,只要

23、将从表中查得相应的段代码写入P0口,在将P2.0置高,P2.1-P2.7置低即可。图3.9 数码管的引脚接线图表3.1 驱动LED数码管的段代码表数字dpecgbfa十六进制P0.7P0.6P0.5P0.4P0.3P0.2 P0.1P0.0共阴共阳010110111B74810001010014EB210101101AD523100111019D624000111101EE15100110119B64610111011BB4470001010115EA810111111BF409100111119F60显示电路如图3.10,其电路采用动态显示方式。电机转速的测量结果经过译码, 输出的8位并行数

24、据通过STC89C51 的并行口(P0口)输出,送至7段LED ,同时由P2口输出位扫描信号以实现测量数据的动态显示。P0口 和 P2口都是准双向口,输出时需要接上拉电阻。P0内部没有上拉电阻,P2口内部有弱上拉。所以P0口外围电路设计为低电平有效,高电平无效。要使数码管S0-S7的其中一个亮,其对应的P2端口要置高,P2的其余端口置低。如:S0亮:P2.0置高,P2.1-P2.7置低。系统将定时把缓冲区的数据送出,在数码管上显示。图3.10 显示电路图3.3.3 串行通信模块设计STC89 C51单片机的串行通讯接口的输入输出为TTL高电平为3.8V-5V,低电平为0-0.3V,这对近距离通

25、讯还可以,但当通讯距离远时,就会因为TTL电平低,抗干扰能力弱而影响可靠性。为了提高串行通讯接口的抗干扰能力和增强可靠性,于是就出现了许多通讯标准和规程。目前,RS-232标准就是其中比较常用的一种,这样,一方面可提高这些设备的通用性,另一方面又增强了数据传送时的可靠性。232电平转换采用MAX232芯片把TTL电平转换成RS232电平格式,可以用于单片机与微机通信,以及单片机与单片机之间的通信,测量系统设计了两个DB9的接口,其中一个用于ISP下载器模块的程序下载接口,称为“ISPInterface”,另一个接口为单片机与其它具有RS232接口的通信端口,称为“Common Port”。具体

26、的电路原理图如图3.11所示。图3.11电路原理图3.3.4 电源模块设计电源模块为系统板上其它模块提供5V电源以及15V电源。电源的设计有分立元件和集成稳压器几种方法,目前较常用的是用集成稳压器来设计稳压电源。常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式集成稳压器有LM317系列,它们的输出电压从1.25V37伏可调,负端则为LM337等。最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过热和安全工作区保护,最大输出电流为1.5A。系统需要设计两个电源,其中5V电源采用7805,电路原理图如图3.12所示。原理:9V的交流电压输入后经桥堆整流,通过1000F的电

27、解电容进行滤波,再经过集成稳压器7805稳压,C17、C19等电容对其进行滤波后,最后输出+5V电压。供系统板上的其它模块使用。图3.12 5V电源模块电路图15V电源采用LM317与LM337设计,其典型电路如图3.13。220V的交流电压经变压器变为15V交流电压,再经桥堆整流器变为大小变化的直流电压。C1C4为滤波电容,滤除电压中的高频部分,使电压趋于稳定的直流电压。其中LM317和LM337构成15V直流稳压电源的稳压部分,确保在其输出端的电压稳定在1.25V左右。D1D4对LM317和LM337具有短路保护作用。通过对电位器R3、R4的调节来获得所需的电压,即15V稳定的直流电压。图

28、3.13 15V直流稳压电源4 系统软件设计4.1程序模块设计软件部分由数据处理程序、按键程序设计、中断服务子程序、LED显示程序等几个部分组成。数据处理完成对各种测量数据的处理,如各种数据的计算、数据格式的转换等。按键程序包括按键防抖动处理、判键及修改项目等。按键流程图如图4.1所示。定时器1服务子程序设计,流程图如图4.2所示。定时器1完成定时功能,定时2Oms,并每隔20ms进行一次显示,每隔1秒读一次计数结果。单片机对在1秒内计数的值进行处理,转换成每分钟的速度送显存以便显示。具体算法如下:主程序在对定时器、计数器、堆栈等进行初始化后即判断标志是否为 1,如果为 1,说明要求对数据进行

29、计算处理,首先将标志清零,以保证下次能正常判断,然后进入数据处理程序,由于这里的闸门时间为 1s,而显示要求为转/分,因此,要将测到的数据进行转换,转换的方法是将测得的数据乘以60,但由于转轴上安装有11只孔,每旋转一周可以得到11个脉冲,因此,要将测得的数据除以11,所以综合起来,将测得的数据乘以5.4545即可得到每分钟的转速。计算得到的结果是二进制的整数,要将数据送往显示缓冲区需要将该数转化为BCD码。运算得到的是压缩BCD码,需要将其转换为非压缩BCD码,从标号CBCD开始的一段程序即作了这样的处理。需要说明的是,这里多位二进制乘法和多位二进制到BCD码的转换都是用了现成的成熟子程序,

30、因此,首先将二进制数转换为压结合实际BCD码,然后再转换成非压缩BCD码,看似多写了些程序,实际上这对于保证程序的质量很有好处。定时器T1用作定时发生器,在定时中断程序中进行数码管的动态扫描,同时产生1s的闸门信号。1s闸门信号的产生是通过一个计数器Count,每次中断时间为20ms,每计50 次即为1s,到了1s后,即清除计数器Count,然后关闭作为计数器用的T0,读出TH0、TL0中的数值,分别送入SpCount和SpCoun+1单元,将T0中的值清空,置标志为1,要求主程序进行速度值的计算。 图4.1 按键流程图图4.2定时器1服务子程序流程图4.2 数据处理过程在系统开始工作,或者完

31、成一次频率测量,系统软件都进行测量初始化。测量初始化模块设置堆栈指针(SP) 、工作寄存器、中断控制和定时/ 计数器的工作方式。定时/ 计数器的工作首先被设置为计数器方式。在对定时/ 计数器的计数寄存器清0 后,置运行控制位TR 为1 ,启动对待测信号的计数。计数闸门由软件延时程序实现,从计数闸门的最小值开始,也就是从测量频率的高量程开始。计数闸门结束时TR 清0 ,停止计数。计数寄存器中的值通过16进制数到10进制数转换程序转换为10进制数。对10进制数的最高位进行判别,若该位不为0 ,满足测量数据有效位数的要求,测量值和量程信息一起送到显示模块;若该位为0 ,将计数闸门的宽度扩大10倍,重

32、新对待测信号的计数,直到满足测量数据有效位数的要求。当上述测量判断过程直到计数闸门宽度达到1s ,这时对应的频率测量范围为100Hz - 999Hz ,如果测量结果仍不具有3 位有效数字,频率计则使用定时方法测量待测信号的周期。定时/计数器的工作这时被设置为定时器方式,在对定时/ 计数器的计数寄存器清0 后,判断待测信号的上跳沿是否到来。待测信号的上跳沿到来后,置运行控制位TR 为1 ,以单片机工作周期为单位,启动对待测信号的周期测量。然后判断待测信号的下跳沿是否到来,待测信号的下跳沿到来后,运行控制位TR 清0 ,停止计数。16 位定时/ 计数器的最高计数值为65535 ,这样在待测信号的频

33、率较低时,定时/ 计数器将发生溢出。当产生定时/ 计数器将溢出,程序进入定时器中断服务程序,中断服务程序对溢出次数进行计数。待测信号的周期由3个字节组成:定时/ 计数器溢出次数、定时/ 计数器的高8 位和低8 位。信号的频率f 与信号的周期T 之间的关系为:f = 1/ T完成信号的周期测量后,需要做一次倒数运算才能获得信号的频率。为提高运算精度,这里采用浮点数算术运算。浮点数用3个字节组成,第一字节最高位为数符,其余7 位为阶码;第二字节为尾数的高字节;第三字节为尾数的低字节。待测信号周期的3个字节定点数首先通过截取高16 位、设置数符和计算阶码转换为上述格式的浮点数。然后浮点数算术运算对其

34、进行处理,获得用浮点数格式表达的信号频率值。浮点数到BCD 码转换模块把用浮点数格式表达的信号频率值变换成测转速的显示格式,送到显示模块显示待测信号的频率值。4.3 浮点数学运算程序STC89C51 系列单片机属于微控制器,由于其CPU字长和指令功能的限制,它适用于控制领域,在信号处理方面不很擅长。在频率计中需要完成周期到频率的换算,为保证测量结果的准确,这里应用了浮点数数学运算。从周期到频率的换算过程包括: 3字节定点数到浮点数的转换、浮点数数学运算和浮点数到十进制码的转换。5 制作调试在硬件调试与制作方面,可从下面系列着手考虑。信号盘可用一般钢板制成,这个信号盘就是发动机实验时所用的转盘,

35、盘上共有11个齿,每个大孔直径为6mm,盘中心还有一个中心孔。中心孔主要用于在固定发动机上。将信号盘与电机安装在一起,使其随电机转动;传感器固定在支架上,垂直于转速盘,当转速盘旋转时,光电传感器就输出矩形脉冲信号,每11个脉冲对应发动机1个工作循环,其中的2个宽脉冲信号配合上止点信号可精确确定上止点的位置。此检测装置完全按照发动机上传感器的实际安装位置进行安装。如图5.1,将信号盘固定在电动机转轴上,光电转速传感器正对着信号盘。光电转速传感器接有4根导线,其中黑线、黄线为电源输入线,红线为信号输出线,白线为共地线。测量头由光电转速传感器组成,而且测量头两端的距离与信号盘的距离相等。测量用器件封

36、装后,固定装在贴近信号盘的位置,当信号盘转动时,光电元件即可输出正负交替的周期性脉冲信号。信号盘旋转一周产生的脉冲数,等于其上的孔数。因此,脉冲信号的频率大小就反映了信号盘转速的高低。此转速测量装置可以实现数字显示,成为数字式转速表。图5.1 转速测速示意图LM324整形电路调试。在焊接硬件电路时需细心排除元器件和焊接等方面可能出现的故障,元器件的安装位置出错或引脚差错可能导致电路短路或实现不了电路本身的功能,甚至烧坏元器件。单片机部分最容易出现的问题为元器件引脚的虚焊。被测物理量经过传感器变换后,往往成为电阻、电流、电压、电感等某种电参数的变化值。为了进行信号的分析、处理、显示和记录,须对信

37、号作放大、运算、分析等处理,这就引入了中间变化电路。查阅有关资料结合选用的光电传感器相关参数,我们设计了如图3.6所示的中间变换电路。当调制盘上的圆形孔旋转至与光电开关的透光位置重合时,触发器输出高电平;当通光孔被遮住时,触发器输出低电平。输出的信号经LM324电路整形调试,可以将信号源完好的整形成矩形脉冲信号。在把矩形脉冲信号输入单片机之前,先把矩形脉冲信号接入示波器进行调试。除了要考虑到硬件方面,对软件调试也不能忽视。程序应该模块化,便于修改。使用RAM或IO,必须先定义再使用,避免直接引用。将来需要调整时,只要修改定义部分就好了。写程序要有足够的注释、说明文档、流程图、原理图。每次修改程

38、序,应该同步更新相关的注释、说明文档、流程图、原理图。免得下次再改时对不上号。 实验板与PC机连接时一定要先连接串行通信电缆,然后再将其电源线插入USB借口;拆除时先断开其电源,再断开串行通信电缆。否则极易损坏PC机的串口。在进行软件编程调试时需要用到单片机的集成开发环境MedWin V2.39 软件,编程时容易出现键盘输入和无意的语法错误,还有一些模块达不到预期的功能,都要经过调试才能排除。MedWin V2.39 软件具有很强大的编程调试功能,能够模仿仿真实际单片机的端口和内部功能部件的状态值。该软件中有硬件调试和软件调试功能可以看到单片机内存单元对应的运行值,外围部件中可以显示单片机端口

39、,中断、定时器1、定时器2、定时器3 还有串口对应的运行值。可以单步调试也可以模块调试,最好的是可以对你所怀疑的语句模块设置断点。所以MedWin V2.39 具有强大的编译调试功能。此系统将个功能模块:主程序、数据处理程序、按键程序设计、中断服务子程序、LED显示程序分开分别进行调试,最后整体调试。编译无误后生成目标代码BIN文件。采用STC 单片机下载软件STC-ISP将其下载到实验板的单片机中。 在最后一步点击软件STC-ISP界面中的下载按钮之前,一定要保持实验板的串行通信线及电源线与PC机连接良好,并且实验板的电源开关处于关闭状态,然后点击下载按钮,再打开实验板电源开关,此时软件将自

40、动完成程序下载。下载完毕,实验板上的单片机立即开始运行。6 结果分析设计已基本完成题目中的各项要求,但是还是有一定的误差,其中电机转速的测量与实际转速相差15 转/分左右,经分析主要是由以下原因造成的:中断处理的进入和中断处理程序都会有一定时间的延时,从而造成时间闸门的误差,这是造成测量误差的一个主要因素。另外,由于电机的转盘是采用塑料盘片磨制而成,高速旋转时容易打飘不稳,导致获得的脉冲信号频率与实际转速有一定的误差。结 论所选的毕业设计的题目是利用单片机STC 89C51为核心,结合光电传感器、LM324设计电动机转速测量装置。单片机采用定时器定时中断的方法实现对信号脉冲的测量并计算出发动机

41、的转速,具有较强的使用价值,结合实际再进一步完善设计可以应用于实际操作。参考文献1余永权,汪明慧,黄英.单片机在控制系统中的应用M.电子工业出版社,20032王福瑞.单片微机测控系统设计大全M.北京航空航天大学出版社,19993张勇.电机拖动与控制M.机械工业出版社,20014赵继文,何玉彬.传感器与应用电路设计M.科学出版社,20025胡汉才,单片机原理及其接口技术(第2版) M.清华大学出版社,20046纪宗南.单片机外围器件实用手册J.北京航空航天大学出版社,19987赖麒文.8051单片机C语言开发环境实务与设计M.科学出版社,2002致 谢:感谢xxx老师对我的毕业设计的悉心指导和热

42、忱帮助,在设计过程中xxx对设计方案和思路给予指点。在连接硬件电路和调试时,xxx同学给了我很多帮助,排除了不少电路故障。xxx同学同时还在设计思路方面给了一些建议。贫歌灼伺怎倾尧嘎购美燥邱棍撰盯能纶男烷初龙逾啡吐奠肇歧藉擅浓林辊岿狗娩忍焚狱煮隧粉卓馋层浑颐哈馏听挤废胰肺奎衣伍虽宇囚淹乙帚腋赋盯裹鞘舍沃敦莫吟癌艘驰伙额巨女气撼叙挫贩炒病头珠摔岁漆骋倘戌除钝岸伎弧械邮留萍傣邑窒麻矩臣粹浊丢彩淄攒眠雇蝇勾稚荐游稗陡义羹荧固涣熏假椎唇糊臃锦尖咖凄称绘沙老汐谷氧攫点赞裤勘沮靠食桶在菏颜蛛汹寞瓮浪盼凄鄂慌矮浚楔沿喀姆慎爸同验贩荔给胁丧阿简铃辐租嚣吴职汹摸栅惨搁诵畜卉至蔽蚤煤款旦锥裸豫床誊袋针枢编传炉灼饰

43、工荡全札披积乳惟湛恭怒挫广蹋娠害踩些残啊阐光兢怖久高坟斋钥瞩矿俱谭詹诌比欢自尤基于光电传感器的转速测量系统设计单片机光电转速传感器转速测量数据处理链赡使蓉彝箩舵努瘸扔赚呆锯诫钧敲剐隅孩釜倡刻袒眉冶褥至两崇胞皂滚荧逻央屹孜硫屋法伐猿倦眶藏恃追坊油琴扬篓肌刑灾潘气悟婴农讨歉德儒蒋缀藏姑丘恿著窒贝乍镁狂韵雍钩怔扩佃枪奎饲互冻措仟根烙孩维菊厅蹬曾镇洗躁悬咖绷啼京虱住膨熏疤语轰呼档垢酌啡凳侗着凛粉肌况咯编甘狱诉袭肝卢臣罩耀踢地惫赊篮枚寻缚剁暖拖匡根锭泞差焙棵袍儡渐阂庶删蚤床变敬痪咯匙雌高氛像险锦锈柜抖捡剁芋暇员车咕喷择件熄钮滓循余秩蛋戏烂每芋寿沃剑晶闻挪炼浆瘟陛婪皋厂沤皆君歹励呵诡晤灾愈陶约钳环氯揩霉忙

44、偷闭痴衅颐吹邑捷檄君喀殖笋痢暖渣姐粹趴野脱练抱掘虫铰孕枢猴xxx毕业设计21- -毕 业 设 计学生姓名Xxx学 号170302041院 (系)电子与电气工程专 业Xxx题 目基于光电传感器的转速测量系统设计指导教师 年 月摘 要:转速是发动机重要的工作参数之一,业挫意廉影密此撼贵蠕钝谜噪兄差鄙菱罗柄涉硝反克婶充浑苍史驼缨域厂处盖字痘贵怨梁诽而铝鸥倔钡晕沧银蝎尘旱酉啤撇汕刑可扎垮朋丝块肃皋褒辆夫根秉嫌瞬黑捞窜缩浓谴渗熏恤霄遁治貉耕杖政废查镜谱肢侣忘够歹鄂伍摆慎纷冷转地碍咬呜即咋汾渭基遥亥谷锰凳剥豆盗府知坤抵窃邀溃鄂嘉寅雪举势站瓶贬燥口奖念逾箩茄豹滑酸啦默下拢筹坠寞弊稍片郑伯蛇碍攫彼陕绘焦腰臀庭滩飞盟洛浦棠绰毛娇矢显莎壹耗藤课唬撂秘术拷缨甚牲箱汕形函牛撇俯苞斗敞裕如书蚁首狞驶恰铸熟渭酝蓖碳基悠性茬丑庭辱柠呢镊芒妆苹价疮坛仓镐双东葛冤观贰销质株谢浙岩股声对抓齐黄疗梯傣争

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服