收藏 分销(赏)

对称性在二重积分中的应用.docx

上传人:天**** 文档编号:3658873 上传时间:2024-07-12 格式:DOCX 页数:3 大小:140.51KB 下载积分:5 金币
下载 相关 举报
对称性在二重积分中的应用.docx_第1页
第1页 / 共3页
对称性在二重积分中的应用.docx_第2页
第2页 / 共3页


点击查看更多>>
资源描述
    对称性在二重积分中的应用     纪铭+杜朝丽 摘要:多元函数积分学是高等数学的重难点内容,作为基础,二重积分的简化途径的掌握非常必要,本文基于被积函數的奇偶性和积分区间的对称性来简化二重积分的计算。 关键词:奇偶函数;对称性;二重积分 二重积分的计算是高等数学的重难点内容,是多元函数积分学的基础,是对定积分的推广,因此一元函数中奇偶函数在对称区间上的简化计算方法页适用于二重积分,本文基于被积函数的奇偶性和积分区域的对称性来简化二重积分的计算,在计算时,要有意识的运用这些方法,来提高解题技巧。 1.积分区域关于坐标轴对称 D关于x轴对称,若被积函数关于y是偶函数,则原积分可写作2倍一半区域上的积分;若被积函数关于y是奇函数,则原积分值为0。(偶倍奇零) 若D关于x轴对称,则 其中,和 分别表示关于y是奇函数和偶函数。 类似地有结论:D关于y轴对称,被积函数关于x同样有“偶倍奇零”的结论。 例1. 设平面区域求。 解:[分析与求解]将被积函数展开为:,我们发现这六项的每一项都必是x或y中其一的奇函数,积分区域D既关于x轴对称,又关于y轴对称,根据对称性结论,遇奇则零。因此该积分值为0. 其中第一个等号是由于D关于x轴对称,被积函数遇y的奇函数就为零;第二个等号是由于D关于y轴对称,被积函数遇x的奇函数也为零。 例2. (2015考研真题)计算二重积分的值,其中 解:[分析与求解]积分区域D关于y轴对称, 2.积分区域关于特殊直线对称(轮换对称) 区域关于直线对称,即则 这种对称也叫做轮换对称,其中地位相同,互换位置积分值不变。同理区域关于直线对称,则地位相同,因此也有相似结论(不做要求)。 例3. (2014考研真题)设平面区域计算 解:[分析与求解]区域D关于直线对称,被积函数 ==== 3.小结 在二重积分计算中,利用区域的对称性与被积函数的奇偶性能大大简化计算过程,需要指出的是,计算中选择适当的对称性存在一定的技巧性,有时轴对称和轮换对称都有涉及。 参考文献: [1]高等数学[M].北京:高等教育出版社,2007 [2]李正元李永乐考研数学复习全书数学一[M].北京:中国政法大学出版社,2013endprint   -全文完-
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服