1、1.1.5 1.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.1 1.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) () 若xint(E),存在d 0,使得Bd (x) E注意到x + x/n x ( n ),故存在N N+,使得x + x/N Bd (x) E即x/( N/( 1 + N ) ) E因此P(x) N/( 1 + N ) 1() 若P(x) 1,使得y = a xE因qint(E),故存在d 0,使得Bd (q) E令h = d (a - 1
2、)/a,zBh (x),令w = (a z - y )/(a - 1),则| w | = | (a z - y )/(a - 1) | = | a z - y |/(a - 1) = | a z - a x |/(a - 1) = a | z - x |/(a - 1) 0,存在yE,使得| x - y | e/2因ny/(n + 1) y ( n )故存在N N+,使得| Ny/(N + 1) - y | e/2令z = Ny/(N + 1),则zE,且P(z) N/(N + 1) 1,由(1)知z int(E)而| z - x | | z - y | + | y - x | 0,故Ax的各
3、分量也非负但不全为零xC,设f (x) = (Ax)/( 1 i n (Ax)i ),则f (x)C容易验证f : C C还是连续的由Brouwer不动点定理,存在f的不动点x0C即f (x0) = x0,也就是(Ax0)/( 1 i n (Ax0)i ) = x0令l = 1 i n (Ax0)i,则有Ax0 = l x01.5.6证明:设B = uC0, 1 | 0, 1 u(x) dx = 1,u(x) 0 ,则B是C0, 1中闭凸集设max (x, y)0, 10, 1 K(x, y) = M,min (x, y)0, 10, 1 K(x, y) = m,0, 1 (0, 1 K(x,
4、 y) dy) dx = N,max x0, 1 | 0, 1 K(x, y) dy |= P令(S u)(x) = (0, 1 K(x, y) u(y) dy)/(0, 1 (0, 1 K(x, y) u(y) dy) dx )则0, 1 (S u)(x) dx = 1,u(x) 0;即S uB因此S是从B到B内的映射u, vB,| 0, 1 K(x, y) u(y) dy - 0, 1 K(x, y) v(y) dy |= | 0, 1 K(x, y) (u(y) - v(y) dy | = max x0, 1 | 0, 1 K(x, y) (u(y) - v(y) dy | M | u
5、- v |;因此映射u # 0, 1 K(x, y) u(y) dy在B上连续类似地,映射u # 0, 1 (0, 1 K(x, y) u(y) dy) dx也在B上连续所以,S在B上连续下面证明S(B)列紧首先,证明S(B)是一致有界集uB,| S u | = | (0, 1 K(x, y) u(y) dy )/(0, 1 (0, 1 K(x, y) u(y) dy) dx )| = max x0, 1 | 0, 1 K(x, y) u(y) dy |/(0, 1 (0, 1 K(x, y) u(y) dy) dx ) (M 0, 1 u(y) dy |/(m 0, 1 (0, 1 u(y)
6、 dy) dx ) = M/m,故S(B)是一致有界集其次,证明S(B)等度连续uB,t1, t20, 1,| (S u)(t1) - (S u)(t2) | = | 0, 1 K(t1, y) u(y) dy - 0, 1 K(t2, y) u(y) dy |/(0, 1 (0, 1 K(x, y) u(y) dy) dx ) 0, 1 | K(t1, y) - K(t2, y) | u(y) dy /(m0, 1 (0, 1 u(y) dy) dx ) (1/m) max y0, 1 | K(t1, y) - K(t2, y) |由K(x, y)在0, 10, 1上的一致连续性,e 0,存
7、在d 0,使得(x1, y1), (x2, y2)0, 1,只要| (x1, y1) - (x2, y2) | d,就有| K(x1, y1) - K(x2, y2) | m e故只要| t1 - t2 | d 时,y0, 1,都有| K(t1, y) - K(t2, y) | m e此时,| (S u)(t1) - (S u)(t2) | (1/m) max y0, 1 | K(t1, y) - K(t2, y) | (1/m) m e = e故S(B)是等度连续的所以,S(B)是列紧集根据Schauder不动点定理,S在C上有不动点u0令l = (0, 1 (0, 1 K(x, y) u0
8、(y) dy) dx则(S u0)(x) = (0, 1 K(x, y) u0(y) dy)/l = (T u0)(x)/l因此(T u0)(x)/l = u0(x),T u0 = l u0显然上述的l和u0满足题目的要求1.6.1 (极化恒等式)证明:x, yX,q(x + y) - q(x - y) = a(x + y, x + y) - a(x - y, x - y)= (a(x, x) + a(x, y) + a(y, x) + a(y, y) - (a(x, x) - a(x, y) - a(y, x) + a(y, y)= 2 (a(x, y) + a(y, x),将i y代替上式
9、中的y,有q(x + i y) - q(x - i y) = 2 (a(x, i y) + a(i y, x)= 2 (-i a(x, y) + i a( y, x),将上式两边乘以i,得到i q(x + i y) - i q(x - i y) = 2 ( a(x, y) - a( y, x),将它与第一式相加即可得到极化恒等式1.6.2证明:若Ca, b中范数| |是可由某内积( , )诱导出的,则范数| |应满足平行四边形等式而事实上,Ca, b中范数| |是不满足平行四边形等式的,因此,不能引进内积( , )使其适合上述关系范数| |是不满足平行四边形等式的具体例子如下:设f(x) =
10、(x a)/(b a),g(x) = (b x)/(b a),则| f | = | g | = | f + g | = | f g | = 1,显然不满足平行四边形等式1.6.3证明:xL20, T,若| x | = 1,由Cauchy-Schwarz不等式,有| 0, T e - ( T - t ) x(t ) dt |2 (0, T (e - ( T - t )2 dt ) (0, T ( x(t )2 dt )= 0, T (e - ( T - t )2 dt = e - 2T 0, T e 2t dt = (1- e - 2T )/2因此,该函数的函数值不超过M = (1- e - 2
11、T )/2)1/2前面的不等号成为等号的充要条件是存在lR,使得x(t ) = l e - ( T - t )再注意| x | = 1,就有0, T (l e - ( T - t )2 dt = 1解出l = (1- e - 2T )/2) - 1/2故当单位球面上的点x(t ) = (1- e - 2T )/2) - 1/2 e - ( T - t )时,该函数达到其在单位球面上的最大值(1- e - 2T )/2)1/21.6.4证明:若xN ,则yN,(x, y) = 0而M N,故yM,也有(x, y) = 0因此xM 所以,N M 1.6.51.6.6解:设偶函数集为E,奇函数集为O
12、显然,每个奇函数都与正交E故奇函数集O E fE ,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h)故h几乎处处为0即f = g是奇函数所以有 E O这样就证明了偶函数集E的正交补E 是奇函数集O1.6.7 证明:首先直接验证,cR,S = e 2p i n x | nZ 是L2c, c + 1中的一个正交集再将其标准化,得到一个规范正交集S1 = jn(x) = dn e 2p i n x | nZ 其中的dn = | e 2p i n x | (nZ),并且只
13、与n有关,与c的选择无关(1) 当b a =1时,根据实分析结论有S = q当b a 1时,若uL2a, b,且uS ,我们将u延拓成a, a + 1上的函数v,使得v(x) = 0 (x(b, a + 1)则vL2a, a + 1同时把S = e 2p i n x | nZ 也看成L2a, a + 1上的函数集那么,在L2a, a + 1中,有vS 根据前面的结论,v = q因此,在L2a, b中就有u = q故也有S = q;(2) 分成两个区间a, b 1)和b 1, b来看在a, b 1)上取定非零函数u(x) = 1 ( xa, b 1) )记pn = a, b 1) u(x)jn(
14、x) dx我们再把u看成是b 2, b 1上的函数(u在b 2, a)上去值为0)那么pn就是u在L2b 2, b 1上关于正交集S1 = jn(x) | nZ 的Fourier系数由Bessel不等式,nZ | pn |2 m,则n - m - 1 0,从zn - m - 1而解析( zn/(2p)1/2, zm/(2p)1/2 ) = (1/i)| z | = 1 ( zn/(2p)1/2 (z*)m/(2p)1/2 )/z dz= (1/(2pi)| z | = 1 zn (z*)m/z dz = (1/(2pi)| z | = 1 zn - m - 1 dz = 0因此, zn/(2p
15、)1/2 n 0是正交规范集1.6.91.6.10证明:容易验证en fn是正交规范集,下面只证明en fn是X的基xX,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y X0,z X0因en, fn分别是X0和X0的正交规范基,故y = nN ( y, en ) en,z = nN ( z, fn ) fn 因z X0,故(x, en) = ( y + z, en) = ( y, en) + ( z, en) = ( y, en)因y X0,故(x, fn) = ( y + z, fn) = ( y, fn) + ( z, fn) = ( z, fn)故x = y + z
16、= nN ( y, en ) en + nN ( z, fn ) fn= nN ( x, en ) en + nN ( x, fn ) fn因此en fn是X的正交规范基1.6.11证明:首先,令j k (z) = ( k +1 )/p)1/2 z k ( k 0 ),则 j k k 0是H 2(D)中的正交规范基那么,u(z)H 2(D),设u(z) = k 0 a k z k,则kN,有(u, j k) = D u(z) j k(z)* dxdy = D ( j 0 a j z j) j k(z)* dxdy= j 0 a j (p/( j +1 )1/2D ( j +1 )/p)1/2
17、z j j k(z)* dxdy= j 0 a j (p/( j +1 )1/2D j j(z) j k(z)* dxdy= j 0 a j (p/( j +1 )1/2 (j j, j k)= a k (p/( k +1 )1/2即u(z)的关于正交规范基 j k k 0的Fourier系数为a k (p/( k +1 )1/2 ( k 0 )(1) 如果u(z)的Taylor展开式是u(z) = k 0 b k z k,则u(z)的Fourier系数为b k (p/( k +1 )1/2 ( k 0 )由Bessel不等式, k 0| b k (p/( k +1 )1/2 |2 | u |
18、 +,于是有 k 0| b k |2/( k +1 ) +(2) 设u(z), v(z)H 2(D),并且u(z) = k 0 a k z k,v(z) = k 0 b k z k则u(z) = k 0 a k (p/( k +1 )1/2j k (z),v(z) = j 0 b j (p/( j +1 )1/2j j (z),(u, v) = ( k 0 a k (p/( k +1 )1/2j k (z), j 0 b j (p/( j +1 )1/2j j (z) )= k 0 j 0 (a k (p/( k +1 )1/2j k (z), b j (p/( j +1 )1/2j j (z
19、) = k 0 j 0 (a k (p/( k +1 )1/2 b j*(p/( j +1 )1/2) (j k (z), j j (z)= k 0 (a k (p/( k +1 )1/2 b k* (p/( k +1 )1/2) = p k 0 (a k b k* )/( k +1 )(3) 设u(z)H 2(D),且u(z) = k 0 a k z k因1/(1 - z) = k 0 z k,1/(1 - z)2 = k 0 (k +1) z k,其中| z | 1故当| z | 1时,有1/(1 - | z | )2 = k 0 (k +1) | z | k根据(2),| u(z) |2
20、 = p k 0 (a k a k* )/( k +1 ) = p k 0 | a k |2/( k +1 )| u |2/(1 - | z |)2 = (p k 0 | a k |2/( k +1 ) ( k 0 (k +1) | z | k ) (p k 0 | a k |2/( k +1 ) | z | k) ( k 0 (k +1) | z | k ) p ( k 0 ( | a k |/( k +1 )1/2 | z | k/2) (k +1)1/2 | z | k/2 )2 (Cauchy-Schwarz不等式)= p ( k 0 | a k | | z | k )2 p | k
21、0 a k z k |2 = p | u(z) |2 ,故| u(z) | | u |/(p1/2 ( 1 - | z | )(4) 先介绍复分析中的Weierstrass定理:若 fn 是区域U C上的解析函数列,且 fn 在U上内闭一致收敛到 f,则f在U上解析(见龚升简明复分析)回到本题设 un 是H 2(D)中的基本列则zD,由(3)知 un(z) 是C中的基本列,因此是收敛列设un(z) u(z)对C中任意闭集F D,存在0 r 0,存在NN+,使得m, n N,都有| un - um | e p1/2 ( 1 - r )再由(3),zF,| un(z) - um(z) | | un
22、 - um |/(p1/2 ( 1 - | z | ) | un - um |/(p1/2 ( 1 - r ) -即f在X上有下界,因而f在C有下确界m = inf xC f (x)注意到a(x, y)实际上是X上的一个内积,记它所诱导的范数为| x |a = a(x, x)1/2,则| |a与| |是等价范数因此f (x) = a(x, x) - Re(u0, x) = | x |a2 - Re(u0, x)设C中的点列 xn 是一个极小化序列,满足m f (xn ) m + 1/n ( nN+ )则由平行四边形等式,| xn - xm |a2 = 2(| xn |a2 + | xm |a2
23、 ) - 4| (xn + xm)/2 |a2 = 2( f (xn) + Re(u0, xn) + f (xm) + Re(u0, xm) ) - 4( f (xn + xm)/2) + Re(u0, (xn + xm)/2)= 2( f (xn) + f (xm) - 4 f (xn + xm)/2) + 2 Re( (u0, xn) + (u0, xm) - (u0, xn + xm) )= 2( f (xn) + f (xm) - 4 f (xn + xm)/2) 2( m + 1/n + m + 1/m ) - 4 m= 2(1/n + 1/m) 0 ( m, n )因此| xn -
24、 xm |2 (1/d) | xn - xm |a2 0 ( m, n )即 xn 为X中的基本列由于X完备,故 xn 收敛设xn x0 ( n )则| xn - x0 |a2 M | xn - x0 |2 0 ( m, n )而由内积a( , ),( , )的连续性,有a( xn , xn ) a( x0 , x0 ),且(u0, xn) (u0, x0),( n )因此f (xn) = a(xn, xn) - Re(u0, xn) a(x0, x0) - Re(u0, x0) = f (x0),( n )由极限的唯一性,f (x0) = m = inf xC f (x)至此,我们证明了f
25、在C上有最小值下面说明最小值点是唯一的若x0, y0都是最小值点,则交错的点列 x0, y0, x0, y0, x0, . 是极小化序列根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0所以最小值点是唯一的最后我们要证明最小点x0C满足给出的不等式xC,t0, 1,有x0 + t ( x - x0)C,因此有f (x0 + t ( x - x0) f (x0)即| x0 + t ( x - x0) |a2 - Re(u0, x0 + t ( x - x0) | x0 |a2 - Re(u0, x0)展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x
26、- x0) ) - t2 | x - x0 |a2故当t(0, 1,有Re ( 2a(x0, x - x0) - (u0, x - x0) ) - t | x - x0 |a2令t 0就得到 Re ( 2a(x0, x - x0) - (u0, x - x0) ) 02.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.72.5.82.5.102.5.122.5.182.5.202.5.222.6.12.6.22.6.32.6.4