1、辽宁石油化工大学毕 业 设 计设计说明书 题 目:年产20万吨煤制甲醇生产工艺初步设计 学 号: 姓 名: 邓华杰 学 院: 职业技术学院 系 别: 石油化工系 专 业: 石油化工生产技术 指导教师: 陈姗姗 完毕日期: 2023/5/18 目 录摘要 3前言 4第一章 概述 51.1 甲醇的性质 51.2 甲醇的用途 51.3 甲醇的生产方法 51.4 设计的目的和意义 61.5 设计的指导思想 6第二章 低压法合成甲醇工艺流程及重要设备72.1 反映原理及特点 72.2 原料气的生产方法 82.2.1 固体燃料气化法 82.2.2 烃类蒸气转化法102.2.3 重油部分氧化法112.2.4
2、 GSP冷激气化法 132.3甲醇合成工艺条件 142.4 甲醇合成工艺流程172.5 甲醇合成反映器192.5.1 冷激式绝热反映器202.5.2 列管式等温反映器21第三章 工艺计算 223.1物料衡算 223.2 热量衡算23第四章 安全卫生 274.1 一氧化碳中毒的症状、急救及防止措施274.2 甲醇中毒症状和急救 274.3 甲醇生产中的防火和防爆 28第五章 三废解决 30致谢 31参考文献 32年产20万吨煤制甲醇生产工艺初步设计摘要甲醇是一种极重要的有机化工原料,也是一种燃料,是碳一化学的基础产品,在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料
3、的推广应用,甲醇的需求大幅度上升。为了满足经济发展对甲醇的需求,开展了此20万t/a的甲醇项目。设计的重要内容是进行工艺论证,物料衡算和热量衡算等。本设计本着符合国情、技术先进和易得、经济、环保的原则,采用煤炭为原料;运用GSP气化工艺造气;NHD净化工艺净化合成气体;低压下运用列管均温合成塔合成甲醇;此外严格控制三废的排放,充足运用废热,减少能耗,保证人员安全与卫生。关键词:甲醇、合成。 前言甲醇是醇类中最简朴的一元醇。1661年英国化学家R.波义耳一方面在木材干馏后的液体产物中发现甲醇,故甲醇俗称木精、木醇。在自然界只有某些树叶或果实中具有少量的游离态甲醇,绝大多数以酯或醚的形式存在。18
4、57年法国的M贝特洛在实验室用一氯甲烷在碱性溶液中水解也制得了甲醇。1923年德国BASF公司一方面用合成气在高压下实现了甲醇的工业化生产,直到1965年,这种高压法工艺是合成甲醇的唯一方法。1966年英国ICI公司开发了低压法工艺,接着又开发了中压法工艺。1971年德国的Lurgi公司相继开发了合用于天然气渣油为原料的低压法工艺。由于低压法比高压法在能耗、装置建设和单系列反映器生产能力方面具有明显的优越性,所以从70年代中期起,国外新建装置大多采用低压法工艺。世界上典型的甲醇合成工艺重要有ICI工艺、Lurgi工艺和三菱瓦斯化学公司(MCC)工艺1 。目前,国外的液相甲醇合成新工艺2具有投资
5、省、热效率高、生产成本低的显著优点,特别是LPMEOHTM工艺,采用浆态反映器,特别合用于用现代气流床煤气化炉生产的低H2(COCO2)比的原料气,在价格上可以与天然气原料竞争。我国的甲醇生产始于1 957年,50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。60年代建成了一批中小型装置,并在合成氨工业的基础上开发了联产法生产甲醇的工艺。70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95 kt/a低压法装置,采用英国ICI技术。1995年12月,由化工部第八设计院和上海化工设计院联合设计的200 kt/a甲醇生产装置在上海太平洋化工公司顺利投产,标志着我国甲醇生产技术向大
6、型化和国产化迈出了新的一步。2023年,杭州林达公司开发了拥有完全自主知识产权的JW低压均温甲醇合成塔技术3,打破长期来被ICI、Lurgi等国外少数公司所垄断拥的局面,并在2023年获得国家技术发明二等奖。2023年,该技术成功应用于国内首家焦炉气制甲醇装置上 一、概述1.1 甲醇性质甲醇俗称木醇、木精,是最饱和醇中最简朴的一元醇,分子式CH3OH。在通常条件下是一种无色、透明、易燃、有毒、易挥发的液体,略带酒精味;分子量32.04,熔点-97.8,沸点64.7,闪点16,自燃点473,能与水、乙醇、乙醚、苯、酮类和大多数其他有机溶剂混溶。蒸气与空气形成爆炸性混合物,爆炸极限6.036.5(
7、体积比)。化学性质较活泼,能发生氧化、酯化、羰基化等化学反映。1.2甲醇用途甲醇是重要有机化工原料和优质燃料,广泛应用于精细化工,塑料,医药,林产品加工等领域。甲醇重要用于生产甲醛,消耗量要占到甲醇总产量的一半,甲醛则是生产各种合成树脂不可少的原料。用甲醇作甲基化试剂可生产丙烯酸甲酯、对苯二甲酸二甲酯、甲胺、甲基苯胺、甲烷氯化物等;甲醇羰基化可生产醋酸、醋酐、甲酸甲酯等重要有机合成中间体,它们是制造各种染料、药品、农药、炸药、香料、喷漆的原料,目前用甲醇合成乙二醇、乙醛、乙醇也日益受到重视。甲醇也是一种重要的有机溶剂,其溶解性能优于乙醇,可用于调制油漆。作为一种良好的萃取剂,甲醇在分析化学中可
8、用于一些物质的分离。甲醇还是一种很有前景的清洁能源,甲醇燃料以其安全、便宜、燃烧充足,运用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一;此外燃料级甲醇用于供热和发电,也可达成环保规定。甲醇还可经生物发酵生成甲醇蛋白,富含维生素和蛋白质,具有营养价值高而成本低的优点,用作饲料添加剂,有着广阔的应用前景1.3 甲醇的生产方法工业上生产甲醇曾有过许多方法,初期用木材或木质素干馏法制甲醇,此法需耗用大量木材,并且产量很低,现早已被淘汰。氯甲烷水解法也可以生产甲醇,但因水解法价格昂贵,没有得到工业上的应用。甲烷部分氧化法可以生产甲醇,并且原料便宜,工艺流程简朴,但因生产技术比较复杂,副反
9、映多,产品分离困难,原料运用率低,工业上尚未广泛采用。目前,工业生产上重要是采用合成气(CO+H2)为原料的化学合成法。此法已有五十数年的历史。由于所使用的催化剂不同,反映温度和反映压力的不同,又分为高压法、低压法和中压法。1.4 设计的目的和意义由于我国石油资源短缺,能源安全已经成为不可回避的现实问题,寻求替代能源已成为我国经济发展的关键。甲醇作为石油的补充已成为现实,发展甲醇工业对我国经济发展具有重要的战略意义。煤在世界化石能源储量中占有很大比重(我国情况更是如此),并且煤制甲醇的合成技术很成熟。随着石油和天然气价格的迅速上涨,煤制甲醇更加具有优势。本设计遵循“工艺先进、技术可靠、配置科学
10、、安全环保”的原则;结合甲醇的性质特性设计一座年产20万吨煤制甲醇的生产车间。通过设计可以巩固、深化和扩大所学基本知识,培养分析解决问题的能力;还可以培养创新精神,树立良好的学术思想和工作作风。通过完毕设计,可以知道甲醇的用途;基本掌握煤制甲醇的生产工艺;了解国内外甲醇工业的发展现状;以及甲醇工业的发展趋势。1.5 设计的指导思想以设计任务书为基础,适应我国甲醇工业发展的需要。加强理论联系实际,扩大知识面;培养独立思考、独立工作的能力。整个设计应贯彻节省基建投资,充足重视技术进步,减少工程造价,节能环保等思想,设计生产高质量甲醇产品。二、低压法合成甲醇工艺流程 2.1 反映原理及特点1主反映当
11、反映物中有二氧化碳存在时,二氧化碳按下列反映生成甲醇:2副反映 又可分为平行副反映和连串副反映 平行副反映 当有金属铁、钴、镍存在时,还也许有下列反映发生: 连串副反映这些副反映的产物还可以进一步发生脱水、缩合、酰化或酮化等反映,生成烯烃、醋类、酮类等副产物。当催化剂中具有碱类时,这些化合物的生成更快。副反映不仅消耗原料,并且影响甲醇的质量和催化剂寿命。特别是生成甲烷的反一个强放热反映,不利于反映温度的控制,并且生成的甲烷不能随产品冷凝,甲烷在循环系统中循环,更不利于主反映的化学平衡和反映速率2.2 原料气的生产方法合成甲醇的工业生产是以固体(如煤、焦炭)、液体(如原油、重油、轻油)或气体(如
12、天然气及其它可燃性气体)为原料,经造气、净化(脱硫)变换,除二氧化碳,配制成一定配比的合成气。在不同的催化剂存在下,选用不同的工艺条件可单产甲醇(分高、中、低压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇经预精镏脱除甲醚,再精镏而得成品甲醇。目前,合成氨生产原料按状态重要有固体原料(煤或焦炭),气体原料(天然气、油田气、炉气、石油废气、有机合成废气),液体原料(石脑油、重油)。生产方法重要有固体燃料气化法(煤或焦炭)、烃类蒸汽转化法(气态烃、石脑油)重油部分氧化法(重油)。2.2.1 固体燃料气化法 固体燃料气化过程是以煤或焦炭为原料,在一定的高温条件下通入空气、水蒸气或富氧空气-水蒸
13、气混合气,通过一系列反映生成具有一氧化碳、二氧化碳、氢气、氮气及甲烷等混合气体的过程。煤或焦炭气化因采用不同的气化剂,可以生产出下列几种不同用途的工业煤气:空气煤气。以空气作为气化剂所制得的煤气。水煤气。以水蒸气作为气化剂所制得的煤气。混合煤气。以空气和适量水蒸气的混合物作气化剂所制得的煤气。半水煤气。分别以空气和水蒸气作气化剂,然后将分别制得的空气煤气和水煤气,两者按混合后气体中(CO+H2)与N2的摩尔比为3.13.2的比例进行掺配,这种混合煤气称为半水煤气。目前,工业上固体燃料为原料制取合成氨原料气的方法,根据气化方式不同,重要有固定床间歇气化法、固定床连续气化法、沸腾床连续气化法和气流
14、床连续气化法。1. 固定床间歇气化法固定床间歇气化过程是先将空气送入煤气发生炉燃烧燃料,放出热量,提高燃料层温度,以供气化所需(因此,固定床间歇气化法也称蓄热法),生成的吹风气经回收热量后大部分放空。然后将蒸汽送入炉与碳层进行气化反映,生成水煤气。由于气化反映是吸热反映,使燃料层温度下降,故需重新通入空气以提高炉温,如此反复交替进行,制得半水煤气。工业上在间歇气化过程中,将自上一次开始送入空气至下一次再送入空气时为止,称为一个工作循环,间歇式制半水煤气的工作循环。每个工作循环涉及下列五个阶段。吹风阶段。空气从炉底吹入,自下而上以提高煤层温度,然后将吹风气经回收热量后放空。蒸汽一次上吹。水蒸气自
15、下而上送入煤层进行气化反映,此时煤层下部温度下降,而上部温度升高,被煤气带走的显热增长。蒸汽下吹。水蒸气自上而下吹入煤层继续进行气化反映。使煤层温度趋于均匀。制得煤气从炉底引出系统。蒸汽二次上吹。蒸汽下吹制气后煤层温度已显著下降,且炉内尚有煤气,如立即吹入空气势必引起爆炸。为此,先以蒸汽进行二次上吹,将炉子底部煤气排净,为下一步吹风发明条件。空气吹净。目的是回收存在炉子上部及管道中残余的煤气,此部分吹风气应加以回收,作为半水煤气中N2的来源。以常压固定床间歇式气化煤气制取工艺对煤种规定苛刻,仅合用优质无烟煤和冶金焦,并且产气量低、总能耗高。2.气流床连续气化法即德士古造气技术,德士古煤气化炉为
16、直立圆筒形结构,分为上中下三部分,上部为反映室,中部为激冷室或废热锅炉,下部为灰渣锁斗。为了减少水煤浆的粘度,易于输送,将直径小于l0mm的煤磨碎,按比例加入水量。由于我国煤的灰熔点普遍偏高,为使其灰熔点能降至13501365以下,加入适量的添加剂和助熔剂,而后将煤水混合物充足湿磨后,送至振动筛,除去大煤粒和机械杂质,即可制成70的水煤浆,用高压泵将其送入烧嘴,同时将来自空分的高压氧也送入烧嘴,两者充足混合,一起由烧嘴喷入气化炉中。在13501400温度下进行气化反映,生成的高温煤气经气化炉底部的激冷室激冷或废热锅炉冷却回收热量后,煤气送往CO变换工序。熔渣冷却固化后进入破渣机破碎后进入锁斗,
17、定期排入渣池,由捞渣机捞出装车外运。2.2.2 烃类蒸气转化法烃类蒸气转化系将烃类与蒸汽的混合物流经管式炉管内催化剂床层,管外加燃料供热,使管内大部分烃类转化为H2、CO和CO2。然后将此高温(850860)气体送入二段炉。此处送入合成氨原料气所需的加N2空气,以便转化气氧化并升温至1000左右,使CH4的残余含量降至约0.3%,从而制得合格的原料气。烃类重要是天然气、石脑油和重油。重油一般采用部分氧化法,天然气和石脑油一般采用蒸汽转化法。天然气的重要成分为CH4,以天然气为原料的蒸汽转化反映为:(1)一段转化反映 在某种条件下也许发生如下反映: 该反映既消耗原料,同时析出的炭黑沉积在催化剂表
18、面,会使催化剂失去活性和破裂,故应尽量避免。工业上一般通过提高水蒸气含量和选择高性能的催化剂来避免析炭。(2)二段转化反映催化剂床层顶部空间燃烧反映:催化剂床层中进行甲烷转化和变换反映: 烃类蒸气转化反映是吸热的可逆反映,高温对反映平衡和反映速度都有利。但即使温度在1000时,其反映速度仍然很低,因此,需用催化剂来加快反映的进行。由于烃类蒸气转化过程是在高温下进行的,且存在析炭问题,这样就规定催化剂除具有高活性、高强度外,还要具有较好的热稳定性和抗析炭能力。镍催化剂是目前工业上常用的催化剂。烃类蒸气转化法制原料气流程均大同小异,都涉及有一、二段转化炉,原料气预热,余热回收与运用。在一段转化炉,
19、大部分烃类与蒸汽在催化剂作用下转化成H2、CO、C02,接着一段转化气进入二段转化炉,在此加入空气,一部分H2燃烧放出热量,床层温度升至1 2001 250,继续进行甲烷的转化反映;二段转化炉出口温度约9501 000,二段转化目的是减少转化气中残余甲烷含量,使其含量小于0.5(体积分数)。烃类蒸气转化法系在加压条件下进行的,随着耐高温、高强度合金钢的研制成功,压力不断提高,目前已达4.55.0MPa。烃类蒸气转化法是以气态烃和石脑油为原料生产合成氨最经济的方法。具有不用氧气、投资省和能耗低的优点。以天然气为原料合成氨,在工程投资、能量消耗和生产成本等方面具有显著的优越性。目前大型合成氨厂多数
20、以天然气为原料。 2.2.3 重油部分氧化法 重油是350以上馏程的石油炼制产品。根据炼制方法不同,分为常压重油、减压重油、裂化重油。重油部分氧化是指重质烃类和氧气进行部分燃烧,由于反映放出的热量,使部分碳氢化合物发生热裂解及裂解产物的转化反映,最终获得以H2和CO为重要组分,并具有少量CO2和CH4(CH4通常在0.5以下)的合成气。1重油部分氧化化学反映假如氧量充足,则会发生完全燃烧反映:假如氧量低于完全氧化理论量,则发生部分氧化,放热量少于完全燃烧,反映式为:当油与氧混合不均匀时,或油滴过大时,处在高温的油会发生烃类热裂解,反映较复杂,这些副反映最终会导致结焦。所以,渣油部分氧化过程中总
21、是有炭黑生成。为了减少炭黑和甲烷的生成,以提高原料油的运用率和合成气产率,般要向反映系统添加水蒸气,因此在渣油部分氧化的同时,尚有烃类的水蒸气转化以及焦炭的气化,生成更多的CO和H2。氧化反映放出的热量正好提供应吸热的转化和气化反映。渣油中具有的硫、氮等有机化合物反映后生成H2S、NH3、HCN、COS等少量副产物。最终生成的水煤气中四种主组分CO、H2O、H2、CO2之间存在的平衡关系要由变换反映平衡来决定。2. 工艺流程重油部分氧化法制取合成气(CO+H2)的工艺流程由四个部分组成:原料重油和气化剂(氧和蒸汽)的预热;重油的气化;出口高温合成气的热能回收;炭黑清除与回收。重要按照热能回收方
22、式的不同,图3.2.8为典型的德士古重油部分氧化激冷工艺流程。原料重油及由空气分离装置来的氧气与水蒸气经预热后进入气化炉燃烧室,油通过喷嘴雾化后,在燃烧室发生剧烈反映,产物气经水洗塔得到合成气。激冷流程具有以下特点:工艺流程简朴,无废热锅炉,设备紧凑,操作方便,热能运用完全,可比废热锅炉流程在更高的压力下气化。局限性之处是高温热能未能产生高压蒸汽。此流程若采用高变催化剂,则规定原料油含硫量低,一般规定S1,否则需用耐硫变换催化剂。 图3.2.9为典型的谢尔重油部分氧化废热锅炉工艺流程。原料重油经高压油泵提压后压力升至6.9MPa,预热至260左右与预热后的氧气和高压过热蒸汽混合,约310的混合
23、气进入喷嘴,进入气化炉进行气化反映,生成含(CO+H2)9092的合成气。从气化炉出来的高温气体进入火管式废热锅炉回收热量后,温度由1300降至350,通过炭黑捕集器、洗涤塔将大部分炭黑洗涤和回收后离开气化工序去脱硫装置。废热锅炉壳程产出10.5MPa蒸汽。废热锅炉流程具有以下特点:运用高温热能产出高压蒸汽,使用比较方便灵活,特别是喷嘴所需要的高压蒸汽缺少汽源时,采用废锅流程自供蒸汽就更为有利;对原料重油含硫量无限制,下游工序可采用先脱硫、后变换的流程。局限性之处是废热锅炉结构复杂,材料及制作规定高,目前工业上气化压力限于6MPa之下。2.2.4 GSP冷激气化1.工艺流程设计一方面是采用GS
24、P气化工艺将原料煤气化为合成气;然后通过变换和NHD脱硫脱碳工艺将合成气转化为满足甲醇合成条件的原料气;第三步就是甲醇的合成,将原料气加压到5.14Mpa,加温到225后输入列管式等温反映器,在XNC-98型催化剂的作用下合成甲醇,生成的粗甲醇送入精馏塔精馏,得到精甲醇。然后运用三塔精馏工艺将粗甲醇精制得到精甲醇。2. GSP工艺简介GSP工艺技术是20世纪70年代末由GDR(原民主德国)开发并投入商业化运营的大中型煤气化技术。与其他同类气化技术相比,该技术因采用了气化炉顶干粉加料与反映室周边水冷壁结构,因而在气化炉结构以及工艺流程上有其先进之处。GSP气化技术的重要特点如下6: (1)采用干
25、粉煤(水份含量2%)作为气化原料,根据后续化工产品的规定,煤粉可用氮气或一氧化碳输送,故操作十分安全。由于气化温度高,故对煤种的适应性更为广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可使用,也可以两种煤掺混使用。对煤的灰熔点的合用范围比其他气化工艺更宽,即使是高水份、高灰分、高硫含量和高灰熔点的煤种也能使用。(2)气化温度高,一般在14501600,煤气中甲烷体积分数小于0.1%,(CO+H2)体积分数高达90%以上。(3)氧耗较低,与水煤浆加压气化工艺相比,氧耗低约15%20%,可减少配套空分装置投资和运营费用。(4)气化炉采用水冷壁结构,无耐火材料衬里。水冷壁设计寿命按25年考虑。正常使用时
26、维护量很少,运营周期长。(5)只有一个联合喷嘴(开工喷嘴与生产喷嘴合二为一),喷嘴使用寿命长,为气化装置长周期运营提供了可靠保障。(6)碳转化率高达99%以上,冷煤气效率高达80%以上。(7)对环境影响小,气化过程无废气排放。(8)投资省,粗煤气成本较低。3. 工艺方案的选择净化工艺涉及;变换、脱硫脱碳、硫回收三个部分。4. 变换工艺以煤为原料制得的粗甲醇原料气必须通过一氧化碳变换工序。变换工序重要有两个方面的作用:通过变换调整氢碳比和使有机硫转化为无机硫。变换工艺重要有:鲁奇低压甲醇生产中的变换工艺,Topse法甲醇生产中的变换工艺,以及国内的以重油为原料的全气量部分变换工艺。设计中的变换工
27、艺是一种全新的设计,该工艺采用的是部分气变换。该工艺的简朴流程为:气化工段来的水煤气一方面进入预变换炉,出炉后分为两部分:一部分进入另一变换炉,变换后通过多次换热和气液分离后去了脱硫系统;另一部分先进入有机硫水解槽脱硫,出来后气体又分为两部分,部分去调节变换炉出口CO含量,部分去发电系统发电。2.3甲醇合成工艺条件为了减少副反映,提高收率,除了选择适当的催化剂外,选择适宜的工艺条件也非常重要。工艺条件重要有温度、压力、空速和原料气组成等。1反映温度反映温度影响反映速度和选择性。合成甲醇反映是一个可逆放热反映,反映速率随温度的变化有一最大值,此最大值相应的温度即为最适宜反映温度。最适宜温度与转化
28、深度及催化剂的老化限度也有关。一般为了使催化剂有较长的寿命,反映初期宜采用较低温度,使用一定期间后再升至适宜温度。其后随催化剂老化限度的增长,反映温度也需相应提高。由于合成甲醇是放热反映,反映热必须及时移走,否则易使催化剂温升过高,不仅会导致副反映 (重要是高级醇的生成)增长,并且会使催化剂因发生熔结现象使活性下降。特别是使用铜基催化剂时,由于其热稳定性较差,严格控制反映温度显得极其重要。2反映压力一氧化碳加氢合成甲醇的主反映与副反映相比,是摩尔数减少最多、而平衡常数最小的反映,因此增长压力对提高甲醇的平衡浓度和加快主反映速率都是有利的。在铜基催化剂作用下,当空速为300Oh1时,不同压力下甲
29、醇生成量的关系如图11.3.1所示由图可以看出,反映压力越高,甲醇生成量越多。但是增长压力要消耗能量,并且还受设备强度限制,因此需要综合各项因素拟定合理的操作压力。用ZnO- Cr203催化剂时,反映温度高,由于受平衡限制,必须采用高压,以提高其推动力。而采用铜基催化剂时,由于其活性高,反映温度较低,反映压力也可相应降至5lOMPa。在生产规模大时,压力太低也会影响经济效果,一般采用10MPa左右,较为适宜。3原料气组成 甲醇合成反映原料气的化学计量比为H2:CO=2:1。一氧化碳含量高,不仅对温度控制不利,并且也会引起羰基铁在催化剂上的积聚,使催化剂失去活性,故一般采用氢过量。氢过量可以克制
30、高级醇、高级烃和还原性物质的生成,提高粗甲醇的浓度和纯度。同时,过量的氢可以起到稀释作用,且因氢的导热性能好,有助于防止局部过热和控制整个催化剂床层的温度。原料气中氢气和一氧化碳的比例对一氧化碳生成甲醇的转化率也有较大影响,其影响关系如图11.3.2所示。从图中可以看出,增长氢的浓度,可以提高一氧化碳的转化率。但是,氢过量太多会减少反映设备的生产能力。工业生产上采用铜基催化剂的低压法甲醇合成,一般控制氢气与一氧化碳的摩尔比为 (2.23.0):1。 由于二氧化碳的比热容较一氧化碳为高,其加氢反映热效应却较小,故原料气中有一定二氧化碳含量时,可以减少反映峰值温度。对于低压法合成甲醇,二氧化碳含量
31、体积分数为5时甲醇收率最佳。此外,二氧化碳的存在也可克制二甲醚的生成。原料气中有氮及甲烷等惰性物存在时,使氢气及一氧化碳的分压减少,导致反映转化率下降。由于合成甲醇空速大,接触时间短,单程转化率低,只有10%15%,因此反映气体中仍具有大量未转化的氢气及一氧化碳,必须循环运用。为了避免惰性气体的积累,必须将部分循环气从反映系统中排出,以使反映系统中惰性气体含量保持在一定浓度范围。工业生产上一般控制循环气量为新鲜原料气量的3.56倍。4空间速率空间速率大小影响甲醇合成反映的选择性和转化率。表11.3.1列出了在铜基催化剂上转化率、生产能力随空间速度变化的实际数据。 表11-6 铜基催化剂上空间速
32、度与转化率、生产能力的关系空间速度/h-1CO转化率/%生产能力/m3/m3催化剂h2023050.125.83000041.526.1从表中数据可以看出,增长空速在一定限度上意味着增长甲醇产量。此外,增长空速有助于反映热的移出,防止催化剂过热。但空速太高,转化率减少,导致循环气量增长,从而增长能量消耗。同时,空速过高会增长分离设备和换热设备负荷,引起甲醇分离效果减少;甚至由于带出热量太多,导致合成塔内的触媒温度难以控制正常。适宜的空间速度与催化剂的活性、反映温度及进塔气体的组成有关。采用铜基催化剂的低压法甲醇合成,工业生产上一般控制空速为10000200OO h-1。本设计空速定位12023
33、 h-12.4甲醇合成工艺流程甲醇合成的典型工艺重要是:低压工艺(ICI低压工艺、Lurgi低压工艺)、中压工艺、高压工艺。甲醇合成工艺中最重要的工序是甲醇的合成,其关键技术是合成甲醇催化剂的和反映器,设计采用用的是低压合成工艺低压法甲醇合成的工艺流程如图11-4所示: 图11-4 低压法甲醇合成的工艺流程l加热炉;2转化器;3废热锅炉;4加热器;5脱硫器;6,12,17,21,24水冷器;7气液分离器;8合成气压缩机;9循环气压缩机;10甲醇合成塔;11,15热互换器;13甲醇分离器;14粗甲醇 中间槽;16脱轻组分塔;18分离器;19,22再沸器;20甲醇精馏塔;23CO2吸取塔这是目前各
34、生产厂家普遍采用的工艺流程。由制气、净化、压缩与合成、精制四大部分组成,此处重要讨论压缩、合成、精制部分。运用天然气或煤转化后得到的(H2+CO)合成气,经换热脱硫 ,脱硫后的合成气含硫不超过0.5ppm,经水冷却,分离出冷凝水后进人合成压缩机 (三段),压缩至压力略低于5Mpa,与循环气混合后在循环气压缩机中增压至5MPa,进人合成反映器,在催化床层中进行合成反映。合成反映器为冷激式绝热反映器,催化剂为铜基催化剂,操作压力为5 MPa,操作温度513543K。由反映器出来的的气体含甲醇6-8%,经热互换器11与合成气热互换后进入水冷器12,使产物甲醇冷凝,然后在甲醇分离器13中将液态的甲醇与
35、气体分离,再经闪蒸除去溶解的气体,得到反映产物粗甲醇送精制。甲醇分离器分出的气体含大量的氢和一氧化碳,返回循环气压缩机循环使用。为防止惰性气体积累,将部分循环气放空。粗甲醇中除含甲醇外,还具有两大类杂质。一类是溶于其中的气体和易挥发的轻组分,如氢气、一氧化碳、二氧化碳、二甲醚、乙醛、丙酮、甲酸甲酯和羰基铁等;另一类是难挥发的重组分,如乙醇、高级醇、水等。可用两个塔予以精馏。粗甲醇一方面进入脱轻组分塔,塔顶分出轻组分,经冷凝后回收其中所含甲醇,不凝气放空。此塔一般为板式塔,约为4050块塔板。塔釜液进入甲醇精馏塔,塔顶采出产品甲醇,重组分乙醇、高级醇等杂醇油在塔的加料板下614块板处侧线气相采出
36、,水由塔釜分出,经回收余热后送废水解决。甲醇精馏塔为6070块塔板。由于低压法合成的甲醇杂质含量少,净化比较容易,运用双塔精制流程,便可以获得纯度(质量分数)高达99.85的精制产品甲醇。2.5甲醇合成反映器甲醇合成反映器实际是甲醇合成系统中最重要的设备。从操作结构,材料及维修等方面考虑,甲醇合成反映器应具有以下规定:(1)催化剂床层温度易于控制,调节灵活,能有效移走反映热,并能以较高位能回收反映热;(2)反映器内部结构合理,能保证气体均匀通过催化剂床层,阻力小,气体解决量大,合成转化率高,催化剂生产强度大;(3)结构紧凑,尽也许多填装催化剂,提高高压空间运用率;高压容器及内件间无渗漏;催化剂
37、装御方便;制造安装及维修容易。合成甲醇反映是一个强防热过程。根据反映热移出方式不同,可分为绝热式和等温式两大类;按照冷却方式不同,可分为直接冷却的冷激式和间接冷却的列管式两大类。2.5.1 冷激式绝热反映器这类反映器把反映床层分为若干绝热段,段间直接加入冷的原料气使反映气体冷却,故称之为冷激式绝热反映器。图11-5是冷激式绝热反映器的结构示意图,反映器重要由塔体、气体喷头、气体进出口、催化剂装卸口等组成。催化剂由惰性材料支撑,提成数段。反映气体由上部进入反映器,冷激气在段间经喷嘴喷入,喷嘴分布于反映器的整个截面上,以便冷激气与反映气混合均匀。混合后的温度正好是反映温度低限,混合气进入下一段床层
38、进行反映。段中进行的反映为绝热反映,释放的反映热使反映气体温度升高,但未超过反映温度高限,于下一段间再与冷激气混合降温后进人再下一段床层进行反映。图11-5 冷激式绝热反映器结构示意图喷嘴 冷激式绝热反映器在反映过程中流量不断增大,各段反映条件略有差异,气体的组成和空速都不同样。这类反映器的特点是:结构简朴,催化装填方便,生产能力大,但要有效控制反映温度,避免过热现象发生,冷激气体和反映气体的混合及均匀分布是关键。冷激式绝热反映器的温度分布如图11-6所示。T/0 1 2 3 4 催化剂床层图11-6 冷激式反映器温度分布图11-7 低压法合成甲醇列管式等温反映器气体出口2.5.2 列管式等温
39、反映器该类反映类似于列管式换热器,其结构如图11-7所示。催化剂装填于列管中,壳程走冷却水 (锅炉给水)。反映热由管外锅炉给水带走,同时产生高压蒸汽。通过对蒸汽压力的调节,可以方便地控制反映器内反映温度,使其沿管长温度几乎不变,避免了催化剂的过热延长了催化剂的使用寿命。列管式等温反映器的优点是温度易于控制,单程转化率较高,循环气量小,能量运用较经济,反映器生产能力大,设备结构紧凑。 2.5.3 反映器材料合成气中具有氢和一氧化碳,氢气在高温下会和钢材发生脱碳反映(即氢分子扩散到金属内部,和金属材料中的碳发生反映生成甲烷逸出的现象),会大大减少钢材的性能。一氧化碳在高温高压下易和铁发生作用生成五
40、碳基铁,引起设备的腐蚀,对催化剂也有一定的破坏作用。因此,反映器材质规定有抗氢蚀和抗一氧化碳腐蚀的能力。为防止反映器被腐蚀,保护反映器机械强度,一般采用在反映器内壁衬铜,铜中还具有1.5%2%锰,但衬铜的缺陷是在加压膨胀时会产生裂缝。当一氧化碳分压超过3.0Mpa时,必须采用耐腐蚀的特种不锈钢(如lCrl8Nil8Ti)加工制造。第三章 工艺计算3.1物料衡算图10 合成物料流程图合成塔中发生的反映:主反映 CO+2H2=CH3OH (1) CO2+3H2=CH3OH +H2O (2) 副反映 2CO+4H2=(CH3O)2+H2O (3) CO+3H2=CH4+H2O (4) 4CO+8H2
41、=C4H9OH+3H2O (5) 8CO+17H2=C18H18+8H2O (6)CO2+H2=CO+H2O (7) 工业生产中测得低压时,每生产一吨粗甲醇就会产生1.52 m3(标态)的甲烷,即设计中每小时甲烷产量为1.90 kmol/h ,42.38m3/h。由于甲醇入塔气中水含量很少,忽略入塔气带入的水。由反映(3)、(4)、(5)、(6)得出反映(2)、(7)生成的水分为; 86.721.902.540.9830.788 =73.06 kmol/h 由于合成反映中甲醇重要由一氧化碳合成,二氧化碳重要发生逆变反映生成一氧化碳,且入塔气中二氧化碳的含量一般不超过5%,所以计算中忽略反映(2)。则反映(7)中二氧化碳生成了73.06 kmol/h,即1636.54 m3/h的水和一氧化碳。3.2 热量衡算(1)计算任务:合成塔的热平衡计算全塔热平衡方程式为:Q1 + Qr = Q2 + Q3+ Q (1)式中: Q1入塔气各气体组分焓,kJ/h; Qr 合成反映和副反映的反映热,kJ/h; Q2 出塔气各气体组分焓,kJ/h; Q3 合成塔热损失,kJ/h; Q沸腾水吸取热量,kJ/h。Q1=(G1Cm1Tm1) (2)式中:G1入塔气各组分流量,m3/h;Cm1 入塔各组分的比热容,kJ/(m3.k);Tm1入塔气体温度,k;Q2=(G2Cm2Tm2) (3)式