1、课题:轴类零件加工工艺 一、 一、 教学目的:熟悉轴类零件加工的重要工艺,其中涉及结构特点、技术规定分析、定位基准选择用一般工艺路线的拟定。掌握阶梯轴的加工工艺分析和工艺路线的拟订。 二、 二、 教学重点:轴类零件加工工艺分析 三、 三、 教学难点:轴类零件加工工艺路线的拟定 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: 第六章 第六章 典型零件加工第一节 第一节 轴类零件加工一、 一、 概述(一)、轴类零件的功用与结构特点1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。2、 2、 分类:轴类零件
2、按其结构形状的特点,可分为光轴、阶梯轴、空心轴和异形轴(涉及曲轴、凸轮轴和偏心轴等)四类。图 轴的种类a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴h)曲轴 i) 凸 轮轴若按轴的长度和直径的比例来分,又可分为刚性轴(L/d12和挠性轴(L/d12)两类。3、表面特点:外圆、内孔、圆锥、螺纹、花键、横向孔(二)重要技术规定:1、尺寸精度 轴颈是轴类零件的重要表面,它影响轴的回转精度及工作状态。轴颈的直径精度根据其使用规定通常为IT69,精密轴颈可达IT5。2、几何形状精度轴颈的几何形状精度(圆度、圆柱度),一般应限制在直径公差点范围内。对几何形状精度规定较高时,
3、可在零件图上另行规定其允许的公差。3、位置精度重要是指装配传动件的配合轴颈相对于装配轴承的支承轴颈的同轴度,通常是用配合轴颈对支承轴颈的径向圆跳动来表达的;根据使用规定,规定高精度轴为0.0010.005mm,而一般精度轴为0.010.03mm。此外尚有内外圆柱面的同轴度和轴向定位端面与轴心线的垂直度规定等。4表面粗糙度 根据零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通机床主轴支承轴颈的表面粗糙度为Ra0.160.63um,配合轴颈的表面粗糙度为Ra0.632.5um,随着机器运转速度的增大和精密限度的提高,轴类零件表面粗糙度值规定也将越来越小。 (三)、轴类零件的材料和毛坯 合
4、理选用材料和规定热解决的技术规定,对提高轴类零件的强度和使用寿命有重要意义,同时,对轴的加工过程有极大的影响。1、轴类零件的材料一般轴类零件常用45钢,根据不同的工作条件采用不同的热解决规范(如正火、调质、淬火等),以获得一定的强度、韧性和耐磨性。对中档精度而转速较高的轴类零件,可选用40Cr等合金钢。这类钢经调质和表面淬火解决后,具有较高的综合力学件能。精度较高的轴,有时还用轴承钢GCrls和弹簧钢65Mn等材料,它们通过调质和表面淬火解决后,具有更高耐磨性和耐疲劳性能。对于高转速、重载荷等条件下工作的轴,可选用20CrMnTi、20MnZB、20Cr等低碳含金钢或38CrMoAIA氮化钢。
5、低碳合金钢经渗碳淬火解决后,具有很高的表面硬度、抗冲击韧性和心部强度,热解决变形却很小。2、轴类零件的毛坯轴类零件的毛坯最常用的是圆棒料和锻件,只有某些大型的、结构复杂的轴才采用铸件。 (四)、轴类零件的预加工 轮类零件在切削加工之前,应对其毛坯进行预加工。预加工涉及校正、切断和切端面和钻中心孔。 1、校正:校正棒料毛坯在制造、运送和保管过程中产生的弯曲变形,以保证加工余量均匀及送料装夹的可靠。校正可在各种压力机上进行。2、切断:当采用棒料毛坯时,应在车削外圆前按所需长度切断。切断叮在弓锯床上进行,高硬度棒料的切断可在带有薄片砂轮的切割机上进行。3、切端面钻中心孔:中心孔是轴类零件加工最常用的
6、定位基准面,为保证钻出的中心孔不偏斜,应先切端面后再钻中心孔。4、荒车:假如轴的毛坯是向由锻件或大型铸件,则需要进行荒车加工,以减少毛坯外国表面的形状误差,使后续工序的加工余景均匀。二、 二、 典型主轴类零件加工工艺分析轴类零件的加工工艺因其用途、结构形状、技术规定、产量大小的不同而有差异。而轴的工艺规程编制是生产中最常碰到的工艺工作。(一) (一)轴类零件加工的重要问题轴类零件加工的重要问题是如何保证各加工表面的尺寸精度、表面粗糙度和重要表面之间的互相位置精度。轴类零件加工的典型工艺路线如下:毛坯及其热解决预加工车削外圆铣键槽等热解决磨削(二) (二)CA6140主轴加工工艺分析1、CA61
7、40主轴技术条件的分析(1)、支承轴颈的技术规定主轴两支承轴颈A、B的圆度允差 0.005毫米,径向跳动允差 0.005毫米,两支承轴颈的1:12锥面接触率70%,表面粗糙度Ra0.4um。支承轴颈直径按IT5-7级精度制造。主轴外圆的圆度规定,对于一般精度的机床,其允差通常不超过尺寸公差的50,对于提高精度的机床,则不超过25%,对于高精度的机床,则应在 510之间。 (2)、锥孔的技术规定主轴锥孔(莫氏 6号)对支承轴颈 A、B的跳动,近轴端允差 0.005mm,离轴端300mm处允差 0.01毫米,锥面的接触率 70,表面粗糙度Ra0.4um,硬度规定 HRC48。(3)、短锥的技术规定
8、短锥对主轴支承轴颈A、B的径向跳动允差0.008mm,端面D对轴颈A、B的端面跳动允差0.008mm,锥面及端面的粗糙度均为Ra0.8um。(4)、空套齿轮轴颈的技术规定空套齿轮的轴颈对支承轴颈A、B的径向跳动允差为 0.015毫米。(5)、螺纹的技术规定这是用于限制与之配合的压紧螺母的端面跳动量所必须的规定。因此在加工主轴螺纹时,必须控制螺纹表面轴心线与支承轴颈轴心线的同轴度,一般规定不超过0.025mm。从上述分析可以看出,主轴的重要加工表面是两个支承轴颈、锥孔、前端短锥面及其端面、以及装齿轮的各个轴颈等。而保证支承轴颈自身的尺寸精度、几何形状精度、两个支承轴颈之间的同轴度、支承轴颈与其它
9、表面的互相位置精度和表面粗糙度,则是主轴加工的关键。(三)、CA6140主轴加工工艺过程 看录像课题:轴类零件加工工艺 四、 四、 教学目的:熟悉轴类零件加工的重要工艺,其中涉及结构特点、技术规定分析、定位基准选择用一般工艺路线的拟定。掌握阶梯轴的加工工艺分析和工艺路线的拟订。 五、 五、 教学重点:轴类零件加工工艺分析 六、 六、 教学难点:轴类零件加工工艺路线的拟定 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: (四)、主轴加工工艺过程分析1、 1、 主轴毛坯的制造方法及热解决批量:大批;材料:45钢;毛坯:模锻件(1)材料在单件小批生产中,轴类零件的毛坯往
10、往使用热轧棒料。对于直径差较大的阶梯轴,为了节约材料和减少机械加工的劳动量,则往往采用锻件。单件小批生产的阶梯轴一般采用自由锻,在大批大量生产时则采用模锻。(2)热解决45钢,在调质解决(235HBS)之后,再经局部高频淬火,可以使局部硬度达成HRC6265,再通过适当的回火解决,可以降到需要的硬度(例如 CA6140主轴规定为 HRC52)。9Mn2V,这是一种含碳0.9%左右的锰钒合金工具钢,淬透性、机械强度和硬度均比45钢为优。通过适当的热解决之后,合用于高精度机床主轴的尺寸精度稳定性的规定。例如,万能外圆磨床 M1432A头架和砂轮主轴就采用这种材料。38CrMoAl,这是一种中碳合金
11、氮化钢,由于氮化温度比一般淬火温度为低540550,变形更小,硬度也很高(HRC65,中心硬度HRC28)并有优良的耐疲劳性能,故高精度半自动外圆磨床MBG1432的头架轴和砂轮轴均采用这种钢材。此外,对于中档精度而转速较高的轴类零件,多选用40Cr等合金结构钢,这类钢经调质和高频淬火后,具有较高的综合机械性能,能满足使用规定。有的轴件也选用滚珠轴承钢如 GCr15和弹簧钢如 66Mn等材料这些钢材经调质和表面淬火后,具有极高的耐磨性和耐疲劳性能。当规定在高速和重载条件下工作的轴类零件,可选用18CrMnTi、20Mn2B等低碳含金钢,这些钢料经渗碳淬火后具有较高的表面硬度、冲击韧性和心部强度
12、,但热解决所引起的变形比38CrMoAl为大。凡规定局部高频淬火的主轴,要在前道工序中安排调质解决(有的钢材则用正火), 当毛坯余量较大时(如锻件),调质放在粗车之后、半精车之前,以便因粗车产生的内应力得以在调质时消除;当毛坯余量较小时(如棒料),调质可放在粗车(相称于锻件的半精车)之前进行。高频淬火解决一般放在半精车之后,由于主轴只需要局部淬硬,故精度有一定规定而不需淬硬部分的加工,如车螺纹、铣键槽等工序,均安排在局部淬火和粗磨之后。对于精度较高的主轴在局部淬火及粗磨之后还需低温时效解决,从而使主轴的金相组织和应力状态保持稳定。2、定位基准的选择对实心的轴类零件,精基准面就是顶尖孔,满足基准
13、重合和基准统一,而对于象CA6140A的空心主轴,除顶尖孔外尚有轴颈外圆表面并且两者交替使用,互为基准。3、加工阶段的划分主轴加工过程中的各加工工序和热解决工序均会不同限度地产生加工误差和应力,因此要划分加工阶段。主轴加工基本上划分为下列三个阶段。(1)、粗加工阶段1)毛坯解决 毛坯备料、锻造和正火2)粗加工 锯去多余部分,铣端面、钻中心孔和荒车外圆等(2)、半精加工阶段)半精加工前热解决 对于45钢一般采用调质解决以达成220240HBS。 2)半精加工 车工艺锥面(定位锥孔) 半精车外圆端面和钻深孔等。(3)、精加工阶段1)精加工前热解决 局部高频淬火2)精加工前各种加工 粗磨定位锥面、粗
14、磨外圆、铣键槽和花键槽,以及车螺纹等。3)精加工 精磨外圆和内外锥面以保证主轴最重要表面的精度。4、加工顺序的安排和工序的拟定具有空心和内锥特点的轴类零件,在考虑支承轴颈、一般轴颈和内锥等重要表面的加工顺序时,可有以下几种方案。外表面粗加工钻深孔外表面精加工锥孔粗加工锥孔精加工; 外表面粗加工钻深孔锥孔粗加工锥孔精加工外表面精加工; 外表面粗加工钻深孔锥孔粗加工外表面精加工锥孔精加工。针对CA6140车床主轴的加工顺序来说,可作这样的分析比较:第一方案:在锥孔粗加工时,由于要用已精加工过的外圆表面作精基准面,会破坏外圆表面的精度和粗糙度,所以此方案不宜采用。第二方案:在精加工外圆表面时,还要再
15、插上锥堵,这样会破坏锥孔精度。此外,在加工锥孔时不可避免地会有加工误差(锥孔的磨削条件比外圆磨削条件差人 加上锥堵自身的误差等就会导致外圆表面和内锥面的不同轴,故此方案也不宜采用。第三方案:在锥孔精加工时,虽然也要用已精加工过的外圆表面作为精基准面;但由于锥面精加工的加工余量已很小,磨削力不大;同时锥孔的精加工已处在轴加工的最终阶段,对外圆表面的精度影响不大;加上这一方案的加工顺序,可以采用外圆表面和锥孔互为基准,交替使用,能逐步提高同轴度。通过这一比较可知,象CA6140主轴这类的轴件加工顺序,以第三方案为佳。通过方案的分析比较也可看出,轴类零件各表面先后加工顺序,在很大限度上与定位基准的转
16、换有关。当零件加工用的粗、精基准选定后,加工顺序就大体可以拟定了。由于各阶段开始总是先加工定位基准面,即先行工序必须为后面的工序准备好所用的定位基准。例如CA6140主轴工艺过程,一开始就铣端面打中心孔。这是为粗车和半精车外圆准备定位基准;半精车外圆又为深孔加工准备了定位基准;半精车外圆也为前后的锥孔加工准备了定位基准。反过来,前后锥孔装上锥堵后的顶尖孔,又为此后的半精加工和精加工外圆准备了定位基准;而最后磨锥孔的定位基准则又是上工序磨好的轴颈表面。工序的拟定要按加工顺序进行,应当掌握两个原则:1) 工序中的定位基准面要安排在该工序之前加工。例如,深孔加工所以安排在外圆表面粗车之后,是为了要有
17、较精确的轴颈作为定位基准面,以保证深孔加工时壁厚均匀。2)对各表面的加工要粗、精分开,先粗后精,多次加工,以逐步提高其精度和粗糙度。重要表面的精加工应安排在最后。为了改善金属组织和加工性能而安排的热解决工序,如退火、正火等,一般应安排在机械加工之前。为了提高零件的机械性能和消除内应力而安排的热解决工序,如调质、时效解决等,一般应安排在粗加工之后,精加工之前。5、大批生产和小批生产工艺过程的比较(1)定位基准的选择表:不同生产类型下主轴加工定位基准的选择工 序 名 称定 位 基 准 面大 批 生 产小 批 生 产加工顶尖孔毛坯外圆划 线粗车外圆顶尖孔顶尖孔钻深孔粗车后的支承轴颈夹一端,托另一端半
18、精车和精车两端锥堵的顶尖孔夹一端,顶另一端粗、精磨外锥两端锥堵的顶尖孔两端锥堵的顶尖孔粗、精磨外国两端锥堵的顶尖孔两端锥堵的顶尖孔粗、精磨难孔两支承轴颈外表面或靠近两支承轴颈的外圆表面夹小端,托大端 (2)轴端两顶尖孔的加工在单件小批生产时,多在车床或钻床上通过划线找正加工。在成批生产时,可在中心孔钻床上加工。专用机床可在同一工序中铣出两端面并打好顶尖孔。(3)外圆表面的加工在单件小批生产时,多在普通车床上进行;而在大批生产时,则广泛采用高生产率的多刀半自动车床或液压仿形车床等设备。 (4)深孔加工在单件小批生产时,通常在车床上用麻花钻头进行加工。在大批量生产中,可采用锻造的无缝钢管作为毛坯,
19、从主线上免去了深孔加工工序;若是实心毛坯,可用深孔钻头在深孔钻床上进行加工;假如孔径较大,还可采用套料的先进工艺。(5)花键轴加工在单件小批生产时,常在卧式铣床上用分度头分度以圆盘铣刀铣削;而在成批生产(甚至小批生产)都广泛采用花键滚刀在专用花键轴铣床上加工。(6)前后支承轴颈以及与其有较严格的位置精度规定的表面精加工,在单件小批生产时,多在普通外圆磨床上加工;而在成批大量生产中多采用高效的组合磨床加工。(四)、主轴加工中的几个工艺问题1、 1、锥堵和锥堵心轴的使用 对于空心的轴类零件,若通孔直径较小的轴,可直接在孔口倒出宽度不大于2mm的60度锥面,代替中心孔。而当通孔直径较大时,则不宜用倒
20、角锥面代之,一般都采用锥堵或锥堵心轴的顶尖孔作为定位基准。使用锥堵或锥堵心轴时应注意事项:(1)一般不半途更换或拆装,以免增长安装误差。(2)锥堵心轴规定两个锥面应同轴,否则拧紧螺母后会使工件变形。2、顶尖孔的研磨 因热解决、切削力、重力等的影响,经常会损坏顶尖孔的精度,因此在热解决工序之后和磨削加工之前,对顶尖孔要进行研磨,以消除误差。常用的研磨方法有以下几种。(1)用铸铁顶尖研磨(2)用油石或橡胶轮研磨(3)用硬质合金顶尖刮研(4)用中心孔磨床磨削2、 2、外圆加工方法 略4、深孔加工一般孔的深度与孔径之比 l/d5就算深孔。CA6140主轴内孔l/d=18,属深孔加工。(1) 加工方式加
21、工深孔时,工件和刀具的相对运动方式有三种:1)工件不动,刀具转动并送进。这时假如刀具的回转中心线对工件的中心线有偏移或倾斜。加工出的孔轴心线必然是偏移或倾斜的。因此,除笨重或外形复杂而不便于转动的大型工件外,一般不采用。2)工件转动,刀具作轴向送进运动。这种方式钻出的孔轴心线与工件的回转中心线能达成一致。假如钻头偏斜,则钻出的孔有锥度;假如钻头中心线与工件回转中心线在空间斜交,则钻出的孔的轴向截面是双曲线,但不管如何,孔的轴心线与工件的回转中心线仍是一致的,故轴的深孔加够采用这种方式。3)工件转动,同时刀具转动并送进。由于工件与刀具的回转方向相反,所以相对切削速度大,生产率高,加工出来的孔的精
22、度也较高。但对机床和刀杆的刚度规定较高,机床的结构也较复杂,因此应用不很广泛。(2)深孔加工的冷却与排屑在单件、小批生产中,加工深孔时,常用接长的麻花钻头,以普通的冷却润滑方式,在改装过的普通车床上进行加工。为了排屑,每加工一定长度之后,须把钻头退出。这种加工方法,不需要特殊的设备和工具。由于钻头有横刃,轴向力较大,两边切削刃又不容易磨得对称,因此加工时钻头容易偏斜。此法的生产率很低。在批量生产中,深孔加工常采用专门的深孔钻床和专用刀具,以保证质量和生产率。这些刀具的冷却和切屑的排出,很大限度上决定于刀具结构特点和冷却液的输入方法。目前应用的冷却与排屑的方法有两种:1)内冷却外排屑法加工时冷却
23、液从钻头的内部输入,从钻头外部排出。高压冷却液直接喷射到切削区,对钻头起冷却润滑作用,并且带着切屑从刀杆和孔壁之间的空间排出。2)外冷却内排屑法 冷却液从钻头外部输入,有一定压力的冷却液经刀杆与孔壁之间的通道进入切削区,起冷却润滑作用,然后经钻头和刀杆内孔带着大量切屑排出。三、丝杆加工(一)、丝杠的功用、分类及结构特点1、丝杠的功用丝杠是将旋转运动变成直线运动的传动副零件,它被用来完毕机床的进给运动。机床丝杠不仅要能传递准确的运动,并且还要能传递一定的动力。所以它在精度、强度以及耐磨性各个方面,都有一定的规定。2、丝杠的分类机床丝杠按其摩擦特性分: 滑动丝杠 滚珠丝杠丝杠 滚动丝杠静压丝杠 滚
24、柱丝杠按其使用性能规定分:不淬硬丝杠丝杠淬硬丝杠 按其精度规定分:普通丝杠丝杠精密丝杠3、丝杠结构的工艺特点 丝杠是细而长的柔性轴,它的长径比往往很大,一般都在2050左右,刚度很差。加上其结构形状比较复杂,有规定很高的螺纹表面,又有阶梯及沟槽,因此,在加工过程中,很容易产生变形。这是丝杠加工中影响精度的一个重要矛盾。 (二)、丝杠的精度规定1、精度等级按丝杠的螺纹精度标准分,国家有标准。2、具体指标有:(1)单个螺距允差(2)中径圆度允差;(3)外径相等性允差;(4)外径跳动允差;(5)牙形半角允差;(6)中径为尺寸公差;(7)外径为尺寸公差;(8)内径为尺寸公差。(三)、丝杆加工的基本工艺
25、路线:对不淬硬丝杠: 毛坯(热解决)校直车端面打中心孔外圆粗加工校直热解决重打中心孔(修正)外圆半精加工加工螺纹校直、低温时效修正中心孔外圆、螺纹精加工。对淬硬丝杠:毛坯(热解决)校直车端面打中心孔外圆粗加工校直热解决重打中心孔(修正)外圆半精加工加工螺纹淬火、回火探伤修正中心孔外圆、螺纹半精磨加工探伤修正中心孔外圆、螺纹精磨加工。(四)丝杠加工工艺重要问题分析 1、丝杠的校直及热解决: 丝杠工艺除毛坯工序外,在粗加工及半精加工阶段,都安排了校直及热解决工序。校直的目的是为了减少工件的弯曲度,使机械加工余量均匀。时效热解决以消除工件的残余应力,保证工件加工精度的稳定性。一般情况下,需安排三次。
26、一次是校直及高温时效,它安排在粗车外圆以后,尚有两次是校直及低温时效,它们分别安排在螺纹的粗加工及半精加工以后。2、定位基准面的加工: 丝杠两端的中心孔是定位基准面,在安排工艺路线时,应一一方面将它加工出来,中心孔的精度对加工质量有很大影响,丝杠多选用带有120。保护锥的中心孔。此外,在热解决后,最后精车螺纹以前,还应适当修整中心孔以保持其精度。丝杠加工的定位基准面除中心孔外,还要用丝杠外圆表面作为辅助基准面,以便在加工中采用跟刀架,增长刚度。3、螺纹的粗、精加工 粗车螺纹工序一般安排在精车外圆以后,半精车及精车螺纹工序则分别安排在粗磨及精磨外圆以后。不淬硬丝杜一般采用车削工艺,经多次加工,逐
27、渐减少切削力和内应力;对于淬硬丝杠,则采用“先车后磨”或“全磨”两种不同的工艺。后者是从淬硬后的光杜上直接用单线或多线砂轮粗磨出螺纹,然后用单线砂轮精磨螺纹。4、重钻中心孔:工件热解决后,会产生变形。其外圆面需要增长的加工余量,为减少其加工余量,而采用重钻中心孔的方法。在重钻中心孔之前,先找出工件上径向圆跳动为最大值的一半的两点,以这两点后作为定位基准面,用个端面的方法切去本来的中心孔,重新钻中心孔。当使用新的中心孔定位时,工件所必须切会的额外的加工余量将减少到原有值。课题:箱体类零件加工工艺 七、 七、 教学目的:了解箱体类零件加工的重要工艺问题,掌握拟定其工艺过程的重要原则,掌握各种孔系加
28、工及保证其精度规定的常用方法和整体式箱体不同生产类型时的加工工艺及分离式箱体的加工工艺特点。 八、 八、 教学重点:各种孔系加工及其精度分析,箱体类零件的加工工艺分析 九、 九、 教学难点:箱体类零件的加工工艺分析 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、教学后记: 第二节 箱体加工一、 一、 概述(一) (一) 箱体零件的功用及结构:1、 1、 功用:箱体是用来支承或安顿其它零件或部件的基础零件。它将机器和部件中的轴、套、齿轮等有关零件连接成一个整体,并使之保持对的的互相位置,以传递转矩或改变转速来完毕规定的动作。2、 2、 箱体的结构特点:箱体的壁厚较薄约1030
29、mm且壁厚不均匀,形状比其它零件复杂。尽管箱体零件的结构形状随其在机器中的功用不同而有很大差别,但也有其共同的特点其内部呈腔形,在箱体壁上有多种形状的凸起平面及较多的轴承交承孔和紧固孔。这些平面和轴承孔的精度规定较高、粗糙度规定较低,且有较高的互相位置精度规定。箱体零件不仅加工部位较多,并且加工的难度也较大。箱体的加工表面重要是平面和孔系。3、 3、 分类:箱体零件从结构功能上看可分为两大类: 整体式箱体分体式 (二) (二) 箱体零件的重要技术规定:1、孔的尺寸精度、几何形状精度和表面粗糙度。 一般情况下,主轴孔的尺寸精度为IT6,表面粗糙度Ra为1。60。4um,其他支承孔的尺寸精度一般应
30、在孔的公差范围内,规定高的孔的形状公差不超过孔公差的1/21/3。2、支承孔之间的互相位置精度和孔距尺寸精度。 同轴孔之间应有一定的同轴度规定。否则,轴的装配困难,轴承的运转情况恶化,磨损加剧及温度升高,从而影响机器的精度和正常运转。 一般,各支承孔轴心线的平行度为(0.010.02)/100mm,主轴孔的同轴度为0.012mm,其他支承孔的同轴度为0.02mm。 3、重要平面的加工精度和表面粗糙度。 平面加工精度涉及平面的形状精度和互相位置精度。由于箱体的重要平面往往是装配基面或是加工中的定位基面,故其加工精度直接影响机器的总装精度和加工时的定位精度。一般,重要平面的平面度为0.030.06
31、mm;表面粗糙度 Ra为1.60.4um;平面间的平行度在全长范围内约为0.050.2mm;垂直度为0.1/300mm。 3、支承孔与重要平面间的尺寸精度及互相位置精度。 箱体上各支承孔对装配基面有一定的距离尺寸精度和平行度规定,对端面有一定的垂直度规定。这些精度规定都将影响箱体部件装配后的精度。 (三)、零件的材料与毛坯 一般箱体零件的材料多采用灰铸铁。常用牌号为HT150和HT200。 铸造毛坯的造型方式一般与生产批量有关。当单件小批生产时,采用木模手工造型,其缺陷是毛坯铸造精度低,加工余量较大;当大批大量生产且毛坯尺寸不太大时,常采用金属模机器造型。这种毛坯的精度较高,加工余量可适当减小
32、。根据工厂的生产经验,下列数据可供参考:一般平面的加工总余量为 612mm;孔半径方向的总余量为 515mm,对手工木模造型应取大值。成批生产直径小于30mm的孔,或单件小批生产直径小于50mm的孔,均不预先铸出。零件铸造后应进行时效解决,以便消除铸件内应力,保证其加工后精度的稳定性。 在单件小批生产条件下,形状简朴的箱体也可采用钢板焊接。对其些特定场合,也可采用其它材料。如飞机发动机箱体,为减轻重量,常用镁铝合金。 二、零件的结构工艺性 箱体零件的结构形状比较复杂,不同的结构形状和使用规定有其不同的结构工艺性。下面仅从机械加工的角度,分析箱体零件结构工艺性的共性问题。 1、基本孔 箱体上的孔
33、通常有通孔、阶梯孔、盲孔和相交孔等。通孔最为常见,其中以短圆柱孔为多。 在通孔内又以孔长L与孔径 D之比 L/D1.5的短圆柱孔工艺性为最佳(箱体外壁上多为这种孔)。阶梯孔的工艺性与“孔径比”有关。孔径相差越小则工艺性越好;孔径相差越大,且其中最小孔径又很小,则工艺性越差。阶梯孔的孔径相差越小,其工艺性越好,若孔径相差较大,即存在较大的内端面时,则一般情况下,锪镗内端面比较困难,难以达成精度和表面粗糙度的规定。相贯通的交叉孔的工艺性也较差,如图所示,为改善工艺性,可将其中直径小的孔不铸通,先加工主轴大孔,再加工小孔。 盲孔的工艺性最差,不易加工,在精镗或精铰盲孔时,要用手动送进,其内端面更难加
34、工,故盲孔的工艺性差,设计时应量避免。若结构上允许,可将盲孔钻通而改成阶梯孔,以改善其工艺性。 2、同轴线上的孔 同一轴线上孔径的大小向一个方向递减,可使镗孔时,镗杆从一端伸入,逐个加工或同时加工同轴线上的几个孔,以保证较高的同轴度和生产率。为使同轴线的各孔能同时加工,必须使相邻两孔的直径差大于加工余量,否则刀具无法通过前孔到达后孔的加工位置(如图所示)此外,在设有中间导向时如图所示,除导套直径 D2应小于前孔尺寸D1减去余量外,后孔尺寸D3也应小于导套尺寸D2,以免刀具刮中间导套。 同轴线上的孔的直径大小从两边向中间递减,可使刀杆从两边进入箱体加工同轴线上各孔,这样,不仅缩短了镗杆的长度,提
35、高了镗杆的刚性,并且为双面同时加工发明了条件,所以大批大量生产的床头箱,常采用此种孔径分布形式。同轴线上孔的直径的分布形式,应尽量避免中间隔壁上的孔径大于外壁上的孔径。由于加工这种孔时,要将刀杆伸进箱体后装刀、对刀,结构工艺性差。3、工艺孔为加工或装配的需要,可增设必要的工艺孔。4、装配基面为便于加工和检查,箱体的装配基面尺寸应尽量大,形状应尽量简朴。5、凸台 箱体外壁上的凸台应尽也许在一个平面上,以便可以在一次走刀中加工出来,而无须调整刀具的位置,使加工简朴方便。6、紧固孔与螺孔箱体上的紧固孔和螺孔的尺寸规格应尽量一致,以减少刀具数量和换刀次数。此外,为保证箱体有足够的动刚度与抗振性,应酌情
36、合理使用筋板、筋条,加大圆角半径,收小箱口,加厚主轴前轴承口厚度。三、箱体加工工艺过程及分析(一) (一) 箱体零件机械加工工艺过程:录像:1、某车床床头箱加工工艺过程整体式箱体2、某减速器箱体加工工艺过程分体式箱体课题:箱体类零件加工工艺 一、教学目的:了解箱体类零件加工的重要工艺问题,掌握拟定其工艺过程的重要原则,掌握各种孔系加工及保证其精度规定的常用方法和整体式箱体不同生产类型时的加工工艺及分离式箱体的加工工艺特点。 二、教学重点:各种孔系加工及其精度分析,箱体类零件的加工工艺分析 三、教学难点:箱体类零件的加工工艺分析 四、教学时 数: 2 学时,其中实践性教学 学时。五、习题: 六、
37、教学后记: (二)箱体加工工艺分析:1、箱体类零件加工的一般工艺路线对于中小批生产,其加工工艺路线大体是:铸造划线平面加工孔系加工钻小孔攻丝;大批大量生产的工艺路线大体是:铸造加工精基准平面及两工艺孔粗加工其它各平面精加工精基准平面粗、精镗各纵向孔加工各横向孔和各次要孔钳工去毛刺。以上为整体式箱体的加工工艺路线,对于分离式箱体,同样按“先面后孔”及“粗、精分阶段加工”这两个原则安排工艺路线。但是整个加工过程必须先对箱盖和底座分别加工对合面、底面、紧固孔和定位销孔,然后再合箱加工轴承孔及其端面等。2、不同批量箱体生产的共性(1) (1) 加工顺序为先面后孔 (2) (2) 加工阶段粗、精分开 (3)工序间安排时效解决 普通精度的箱体,一般在铸造之后安排一次人工时效解决。一些高精度的箱体或形状特别复杂的箱体,在粗加工之后还要安排一次人工时效解决,以消除粗加工所导致的残余应力。 (4)一般都用箱体上的重要孔作粗基准 箱体零件的粗基准一般都用它上面的重要孔作粗基准,如主轴箱都用主轴孔作粗基准。3、不同批量箱体生产的特殊性(1)粗基准的选