收藏 分销(赏)

氮掺杂空心碳纳米球嵌入氮掺杂石墨烯负载钯纳米粒子作为甲酸氧化的高效电催化剂.pdf

上传人:自信****多点 文档编号:3110782 上传时间:2024-06-18 格式:PDF 页数:13 大小:19.38MB
下载 相关 举报
氮掺杂空心碳纳米球嵌入氮掺杂石墨烯负载钯纳米粒子作为甲酸氧化的高效电催化剂.pdf_第1页
第1页 / 共13页
氮掺杂空心碳纳米球嵌入氮掺杂石墨烯负载钯纳米粒子作为甲酸氧化的高效电催化剂.pdf_第2页
第2页 / 共13页
氮掺杂空心碳纳米球嵌入氮掺杂石墨烯负载钯纳米粒子作为甲酸氧化的高效电催化剂.pdf_第3页
第3页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Cite this:NewCarbonMaterials,2024,39(2):321-333DOI:10.1016/S1872-5805(24)60844-9N-doped hollow carbon nanospheres embedded in N-doped grapheneloaded with palladium nanoparticles as an efficient electrocatalyst forformic acid oxidationFANGYue1,YANGFu-kai1,QUWei-li1,2,*,DENGChao1,WANGZhen-bo3,4(1.Coll

2、ege of Chemistry and Chemical Engineering,Harbin Normal University,Harbin 150025,China;2.Key Laboratory of Photochemical Biomaterials and Energy Storage Materials,Harbin Normal University,Harbin 150025,China;3.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage

3、,School of Chemistry and Chemical Engineering,State KeyLab of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150001,China;4.Shenzhen Key Laboratory of Special Functional Materials,Shenzhen Engineering Laboratory for Advance Technology of Ceramics,Guangdong ResearchCenter

4、for Interfacial Engineering of Functional Materials,College of Materials Science and Engineering,Shenzhen University,Shenzhen 518060,China)Abstract:Efficientelectrocatalystswithalowcost,highactivityandgooddurabilityplayacrucialroleintheuseofdirectform-icacidfuelcells.PdnanoparticlessupportedonN-dope

5、dhollowcarbonnanospheres(NHCNs)embeddedinanassemblyofN-dopedgraphene(NG)withathree-dimensional(3D)porousstructurebyasimpleandeconomicalmethodwereinvestigatedasdirectform-icacidfuelcellcatalysts.Becauseoftheuniqueporousconfigurationofinterconnectedlayersdopedwithnitrogenatoms,thePd/NHCNNGcatalystwith

6、Pdnanoparticleshasalargecatalyticactivesurfacearea,superiorelectrocatalyticactivity,ahighsteady-state current density,and a strong resistance to CO poisoning,far surpassing those of conventional Pd/C,Pd/NG,andPd/NHCNcatalystsforformicacidelectrooxidation.WhentheHCN/GOmassratiowas11,thePd/NHCNNGcatal

7、ysthadanoutstandingperformanceinthecatalyticoxidationofformicacid,withanactivity4.21timesthatofPd/C.Thisworkindicatesawaytoproducesuperiorcarbon-basedsupportmaterialsforelectrocatalysts,whichwillbebeneficialforthedevelopmentoffuelcells.Key words:Formicacidelectrooxidation;N-dopedhollowcarbonnanosphe

8、re;N-dopedgraphene;Supportmaterial;Three-dimen-sionalinterconnectedlayeredporousconfiguration1IntroductionWiththecontinuousdevelopmentofurbanmod-ernization,thedemandforenergyisincreasing.Theexcessivedependenceonfossilfuelshascausedmanynegativeimpactsonthehumanenvironment.There-fore,the development o

9、f clean energy and energystoragedeviceshasbecomeanewdirectionforcon-temporaryscientificresearchers12.Fuelcellsarere-cognizedasanenvironmentallyfriendlynewenergyutilization technology.Due to their versatility andflexibility34,directformicacidfuelcells(DFAFCs)anddirect methanol fuel cells(DMFCs)have r

10、e-ceived extensive research interest5.Compared tomethanol,formic acid has the advantages of beingnon-toxic,easier to handle,higher energy density,lowerpermeabilitythroughtheprotonexchangemem-brane,andmorepotentialforinclusioninregulargas-olineinfrastructure611.Commonlyusedformicacidfuel cell catalys

11、ts are palladium-based catalysts andplatinum-based catalysts12.The palladium-basedcatalystsarehighlyactiveandlowcostbutslightlylessstable13.Therefore,inordertorealizethelarge-scaleapplicationofDFAFCs,itisnecessarytodevel-oppalladium-basedcatalystswithhighstabilityandhighactivity6.Usually,theperforma

12、nceofpalladi-um-basedcatalystscanbeimprovedbypreparingal-loycatalystswithdifferentmorphologies,addingmet-alcompound promoters,doping non-metallic ele-ments,andimprovingthedispersionofpalladiumonthesupport1416.Asupportmaterialhasacrucialef-fectontheperformanceofacatalyst17.Excellentsup-Received date:

13、2023-11-27;Revised date:2024-02-02Corresponding author:QUWei-li,Ph.D,Professor.E-mail:Author introduction:FANGYue.E-mail:Homepage:http:/ specific surface area and strongmetal-supportinteraction.Atpresent,carbonmateri-alsaremostwidelyusedtodisperseactivespeciesinfuelcellcatalysts.Moreover,differentca

14、rbonmateri-als have different structures and properties1820.Amongthem,graphene,whichhasatwo-dimensionalstructure,is composed of a single layer of carbonatomsconnectedbysp2hybridization.Ithasanultra-high electron mobility and specific surface area,whichmakesitsuitableasasupportforfuelcellcata-lysts21

15、.However,thetwo-dimensional(2D)structuretendstostackundervanderWaalsforces,leadingtoinaccesibilitytoreactionsitesandpoordispersionofmetalparticles.Ontheotherhand,comparedtoidealgraphene,thedeteriorationoftheelectricalconductiv-ityof graphene prepared from GO significantly re-duces the electrocatalyt

16、ic performance of graphene-supportedpreciousmetalcatalysts.Therefore,itisde-sirabletoaddothercarbon-basedmaterialstomain-taintheconductivityofthecarrierandsimutaneouslyreducethestackingof2Dgraphene22.Asaresult,weconsider the introduction of spacers into graphenesheetstoprepareathree-dimensional(3D)i

17、ntercon-nectedlayered porous configuration,which can im-provethedispersionofpreciousmetalsandtheacces-ibilityofactivesitestoreactants2325.Duetothepresenceofbothhydrophobicandhy-drophilicgroupsinGO,othercarbonmaterialscanbeefficientlydispersedonitssurface,whichisbenefi-cialforconstructinga3Dstructure

18、.Amongnumer-ous carbon materials,hollow carbon nanospheres(HCNs)arecommonlyusedaselectrodematerialsbe-causeoftheiruniquehollowstructure,whichcanactas an ion reservoir,improve electron conduction,providelargesurfaceareaandshortendiffusionpathstofacilitatemasstransport26.ThusHCNscanbein-troducedintogr

19、apheneasspacers.Usually,HCNsaresynthesizedbythetemplateagentmethod,whichisusedtocontrolthemorphologyofHCNs,butitspre-parationtimeislong,thestepsaretedious,andtheor-ganictemplate agent is not easily removed com-pletely,which may block the active sites ofpalladium2728.Therefore,weuseasimplenon-tem-pla

20、temethodtoprepareHCNs,whichgreatlysavesthepreparationtimeandachievesthegoalofmakingHCNsastwo-dimensionalgraphenespacers.Inaddition,dopingnitrogenatomscanoptimizethe electrical conductivity of graphene and hollowcarbonspheres,whichinturncanchangetheelectron-icstructure of the catalyst and improve the

21、 elec-trocatalyticactivity29.Thedopednitrogenatomscanalso effectively anchor the Pd NPs and change thenucleationprocessofthecatalyst,resultinginasmallparticlesizeoftheloadedPdNPs30.Also,nitrogendopingalsofacilitatestheremovaloftoxicintermedi-atesandprolongsthecatalystlifetime31.Wechosetoachieveeffec

22、tivedopingofnitrogenbyin-situdopingwith a mild nitrogen-containing precursor urea32.Herein,wecompositeHCNswithGOandcarryoutnitrogendopingtreatmenttoconstructauniquepor-ous NHCNNG support material.NHCNNGloadedwithPdNPs(denotedasPd/NHCNNG)arefabricatedasacatalystforformicacideletrooxidation.Theelectro

23、chemicalperformanceoftheas-preparedsamples are investigated.Through electrochemicaltesting,itisfoundthatPd/NHCNNGcatalystexhib-itssignificantly improved electrocatalytic perform-anceduetotheuniqueporousconfigurationandnitro-gendoping.2Experimental 2.1 ChemicalsFlake graphite(50 m,99.9%)was purchased

24、from Forsman Corporation.Spherical carbon black(VulcanXC-72)waspurchasedfromCabotCorpora-tion.Palladium()chloride(PdCl2,99.9%)waspur-chased from J&K Chemica.Sodium borohydride(NaBH4,98.0%)was bought from Tianjin AoranFineChemicalResearchInstitute.Urea(CH4N2O,99.0%)wasboughtfromTianjinWindshipChemica

25、lReagentTechnologyLtd.5%(massfraction)NafionwassuppliedbySigma-Aldrich.2.2 Sample synthesis2.2.1PreparationofNHCNNGGOwassynthesizedfromflakegraphitebythe322新型炭材料(中英文)第39卷modifiedHummersmethod33.TheHCNswerepre-paredaccordingtothefollowingmethods34.TogetHCNs,1gofsphericalcarbonblackwasputintoa100mLrea

26、ctionkettle,15mLofconcentratednitricacidwasaddedandmixedthoroughly.Themixturewasputintoanautoclave,hydrothermallytreatedat150Cfor20h,washed,anddriedundervacuumfor4h.40mgofGOand40mgofHCNswereultrason-icallydispersedseparatelyin40mLultrapurewater.Then,thedispersantsweremixeduntiluniform.2gureanitrogen

27、precursorwasaddedintothemixture,stirredmechanicallyfor15min,putintothereactionkettle and treated at 160 C for 4 h.The resultingproductwaswashedwithwateranddriesundervacu-umfor4htoobtainNHCNNG-1:1.NHCNNG-1:2andNHCNNG-2:1supportmaterialswerepre-paredbythesamemethodbyadjustingthemassra-tiosofHCNstoGOto

28、1:2and2:1,respectively.2.2.2SynthesisofPd/NHCNNG30mgNHCNNGand30mLultra-purewaterwereultrasonicallymixedfor1h,andthenewlypre-pared14.1mL5mmolL1PdCl2solutionwasaddedtotheabovemixtureunderagitation.ThepHvaluewas adjusted to between 9 and 10 using NaOH(1molL1).Then,22.8mgNaBH4wasslowlyaddedandstirredfor

29、2h,washedwithultrapurewateranddriedundervacuumfor4htoobtainPd/NHCNNG.2.3 CharacterizationThemorphology of the Pd/NHCNNG cata-lystswasinvestigatedusingaHitachiS-4800scan-ning electron microscope(SEM)and a JEOL-JEM2100F transmission electron microscope(TEM).X-raydiffraction(XRD,RigakuD/maxTTR-)andX-ra

30、yphotoelectron spectroscopy(XPS,Thermo Sci-entific K-Alpha+)were used to analyze the crystalstructure and surface compositions of the catalysts.Raman spectra of different materials were collectedusingaHORIBAScientificLabRAMHREvolutionRaman microscope.Nitrogen adsorption-desorptiontest(BET,Quantachro

31、me NOVA-3000)was carriedoutat77K.2.4 Electrochemical measurementsAll electrochemical testing of catalysts in thiswork was done in a three-electrode system on aCHI650Eelectrochemicalworkstation(thewholesys-temwaskeptina25Cwaterbath).Thethree-elec-trodesystemusedforelectrochemicaltestingconsistsofagla

32、ssycarbonelectrodecoatedwithacatalystastheworkingelectrode,aHg/Hg2SO4electrodeasthereference electrode,and a Pt plate electrode as theauxiliary electrode.The preparation method of theworkingelectrodeisasfollows.5.0mgofthepre-paredcatalystwasmixedwith2.5mLofethanolandultrasonicallydispersedfor20min.1

33、0uLofthewell-dispersedsuspensionwasthentransferredtoaglassycarbonelectrodewithadiameterof4mm,andthen5uLof5%(massfraction)Nafionwasdrippedontothesuspension-coatedelectrode,andtheelectrodewasplacedintheairtoallowittodrynaturally.CyclicvoltammetrytestswereaccomplishedinaN2-saturatedelectrolytecontainin

34、g0.5molL1H2SO4withorwithout0.5molL1HCOOH,withascanrateof50mVs1andascanrangeof0.630.32V.Elec-trochemicalimpedancetestswererealizedatatestpo-tential of 0.45 V and a test frequency of between0.01and100000Hz.Amperometrici-tcurvesweretestedatatestpotentialof0.4Vandatesttimeof3600s.The electrochemically a

35、ctive surface area(EC-SA)was evaluated based on the reduction peak ofPdOwithapotentialintervalof0.05to0.4VintheCVcurveobtainedin0.5molL1H2SO4solution.ThefollowingformulaisusedtocalculateECSA.ECSA=Q420mPdWhereQisthechargeadsorbedbyoxygenduringtheunderpotentialdeposition,Q=S/v,Sistheintegrationarea,vi

36、sthesweepspeed(0.05Vs1)duringthetest,420Ccm2isthechargedensitycorrespondingtooxygenadsorptiononasinglelayerofPd,andmPdistheloadingmassofPdontheglassycarbonworkingelectrode(g).3ResultsanddiscussionInthisstudy,weestablishedasyntheticmethodasshowninFig.1.TheNHCNNGsupportmaterial第2期FANGYueetal:N-dopedho

37、llowcarbonnanospheresembeddedinN-dopedgraphene323witha3Dinterconnectedporoushierarchicalconfig-uration was synthesized by embedding N-dopedHCNsintoN-dopedgraphenewithabottom-upsyn-thesismethod.Afterwards,PdNPsweredepositedontheobtainedsupport.Thesynthesismethodconsistsof2mainsteps:(1)self-assemblyof

38、NHCNNGsup-portbyasolvothermalmethodusingureaasthenitro-gen source and(2)loading of Pd NPs ontoNHCNNGsupport by sodium borohydride reduc-tionmethod.Fig.2a-cshowstheSEMimagesofdif-ferentsamples,andHCNsofuniformsizearetightlystackedtogetherinFig.2a.Fig.2bshowsthefoldedstructureofreducedGO,wherethelayer

39、sofgrapheneareclusteredwitheachothertomakethelayerspa-cinglimitedduetovanderWaalsforces,showingathick edge structure,and some of the granular Pdnanocrystals are dispersed on the graphene surface.AfterNHCNsareembeddedinNG(Fig.2c),NHCNsarearbitrarilydistributedbetweenNG.Thethicknessofthegraphenelayere

40、dgesdecreasesanda3Dinter-connectedlayeredporousmorphologyappears,whichisduetotheintroductionofNHCNsthathinderthestackingofNGlayers.ItindicatesthatHCNscanactasnanoscale spacers between graphene layers27.Fig.2dshowstheTEMimageofHCNs.Asshowninthefigure,thetreatedsphericalcarbonblackshowsahollowstructur

41、e,withashelllayerthicknessofabout20nmandacentralcavityofabout50nm.Owingtotheinhomogeneityofthecrystallizationofsphericalcarbonblack,the reaction activity of graphite do-mainsintheprimaryparticlesisdifferentfromthatofamorphousdomains.Theamorphousdomainsintheprimaryparticleshavehigherreactionactivitya

42、ndarepreferentially oxidized by concentrated nitric acid,resultingintheformationofthehollowstructure34.TheTEMimagesofPd/NHCNareshowninFig.2eand2i,whichrevealsthatthesphericalcarbonblackappearstohaveanobvioushollowstructureafterox-idation,thus proving the successful synthesis ofHCNs34.Inaddition,PdNP

43、scanbeuniformlysup-portedonHCNs,butasmallamountofaggregatesarestillseen.Pd/NG(Fig.2f,j)showsthelamellarstruc-tureofGO,thePdNPsisslightlylessagglomeratedcomparedwiththatontheHCNs,andthesizeofPdNPsis smaller.As seen in the TEM images ofPd/NHCNNG-1:1(Fig.2g,k),theHCNsaredis-tributedinthelamellargraphen

44、e,indicatingthattheHCNsaresuccessfullyinsertedintothelamellarstruc-tureofgraphene,anditisseenthatthedistributionofPdNPsinPd/NHCNNG-1:1ismoreuniformandthe agglomeration is further reduced.The averageparticle sizes of the measured Pd/NHCN,Pd/NG,Pd/NHCNNG-1:1are6.19,5.89and3.34nm,re-spectively.IntheHRT

45、EMimageofPd/NHCNNG-1:1(Fig.2h),theclearlatticestripeof0.23nm,cor-responding to the(111)lattice plane of the face-centered cubic Pd lattice,further demonstrates thesuccessfulloadingofPdNPs.Inaddition,EDSdatawereprovidedtodeterm-ine the elemental compositions of Pd/NHCNNGcatalystswithdifferentproporti

46、onsandtheresultsareshowninFig.2l-n.EDSdatashowsthatthePdload-GraphiteOxidationExfoliationGraphene oxideHNO3NaBH4PdCl2Urea150 C,20 h160 CSpherical carbonNitrogen doped hollow carbonCarbonPalladium nanoparticlesNitrogenHollow carbon nanospheresPd/NHCNNGFig.1SchematicillustrationofthesynthesisofPd/NHCN

47、NG324新型炭材料(中英文)第39卷inginallsamplesisaround20%(massfration),whichissimilartothetheoreticalvalue,andtheNcontentincreaseswiththeincreaseofGOintherawmaterial,whichindicatesthatNatomsareselectivelydopedonGO,enabling the high deposition efficiency on thesupport35.While excess N doping may reduce thegraphi

48、tizationdegreeoftheNHCNNGsupport,thusaffectingelectronicconductivity36.The crystal structures of Pd/NHCN,Pd/NG,Pd/NHCNNG-2:1,Pd/NHCNNG-1:1 and Pd/NHCNNG-1:2wereanalyzedbyXRD(Fig.3a).ItcanbeobservedthatthepeakofGOat10.5isthe(002)characteristicdiffractionpeakoflayeredGO.InPd/NGtheGOcharacteristicpeakd

49、isappearsandtheC(002)broadpeakat25appears,indicatingthatGOisreducedtographene,resultinginthecharacteristicpeak of graphitic carbon material37.The Pd(111),(200),(220)and(311)characteristicpeaksappearinPd/NHCN,Pd/NG,Pd/NHCNNG-2:1,Pd/NHCNNG-1:1andPd/NHCNNG-1:2,indicatingthatPdisintheformofaface-centere

50、dcubicstructure.Accord-ingtoSchellersformula,theparticlesizeofPdinthePd/NHCNNG-1:1catalystis4.05nm,whichisthesmallest among several samples,followed byPd/NHCNNG-1:2,Pd/NHCNNG-2:1,Pd/NG,and Pd/NHCN,whose particle sizes are 4.58,5.96,6.12and6.46nm,respectively.Fig.3bdepictstheRa-manspectraofGOandPd/NH

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服