收藏 分销(赏)

华侨大学数学科学学院(泉州校区)《723数学分析》历年考研真题汇编(含部分答案).pdf

上传人:雁** 文档编号:310278 上传时间:2023-08-02 格式:PDF 页数:29 大小:2.26MB
下载 相关 举报
华侨大学数学科学学院(泉州校区)《723数学分析》历年考研真题汇编(含部分答案).pdf_第1页
第1页 / 共29页
华侨大学数学科学学院(泉州校区)《723数学分析》历年考研真题汇编(含部分答案).pdf_第2页
第2页 / 共29页
华侨大学数学科学学院(泉州校区)《723数学分析》历年考研真题汇编(含部分答案).pdf_第3页
第3页 / 共29页
华侨大学数学科学学院(泉州校区)《723数学分析》历年考研真题汇编(含部分答案).pdf_第4页
第4页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、目录2016年华侨大学723数学分析(A)考研真题2015年华侨大学723数学分析考研真题2014年华侨大学723数学分析考研真题2013年华侨大学723数学分析考研真题2012年华侨大学723数学分析(A)考研真题2011年华侨大学725数学分析(B)考研真题及详解2010年华侨大学725数学分析(A)考研真题2009年华侨大学727数学分析(B)考研真题2008年华侨大学727数学分析(A)考研真题2016年华侨大学723数学分析(A)考研真题2015年华侨大学723数学分析考研真题2014年华侨大学723数学分析考研真题2013年华侨大学723数学分析考研真题2012年华侨大学723数学

2、分析(A)考研真题2011年华侨大学725数学分析(B)考研真题及详解一、(共24分,每小题8分)求下列极限.1;解:原式2;解:.因 且,因此,.3.解:原式二、(15分)设函数在区间 上连续,证明:若对任何有理数有,则在 上.证明:(reductioadabsurdum)Assume&TakeBecause iscontinuous,when,Sothat,when,Bythedensityofrationalnumbers,itsatisfiesSoItisacontradictiontoHence,.三、(10分)设,为非空有界数集,证明:.证明:因 非空且有界,因此 的上、下确界都存

3、在,有,因此,从而有,故而有又有,因此,从而;同理有,故而得由所证结论可得.四、(共18分,每小题9分)计算下列积分.1;解:原式.2,其中 为自然数.解原式.五、(10分)证明函数在处连续,但在处导数不存在.证明:当时,又,因此,即在处连续.因,因此不存在,即在处导数不存在.6(15分)讨论积分为绝对收敛还是条件收敛.解:,当时,因此,当,时,严格单调减且趋于零,由Dirichlet判别法知积分收敛,从而也收敛.当时,因收敛,而发散,因此,发散即原积分条件收敛.7(10分)计算积分,其中为柱面被平面,所截部分的外侧.解:原式.8(10分)求曲面的平行于平面的切平面.解:令则曲面在点处的切平面

4、方程为则有关系式将,代入得从而得,所求切平面方程为和即.9(10分)求在处的泰勒(Taylor)展开式的前四项.解:,().10(10分)计算曲线积分,其中为以,为顶点的正方形的围线.解:的方程为;的方程为;的方程为;的方程为在围线上恒成立因此,.11(8分)设在无穷区间内可导,且,其中为某一常数证明:在区间内至少有一点 满足.证明:令,则在上连续.若,则,结论成立设在内不为常数则当充分小时,必存在,满足,或不妨设因,因此,当时,因在上连续,且,以及,因此在内有最大值点(),它也为极大值点,故有.若当时,因此在内有最小值点,也为极小值点,故也有.12(10分)设定义在上,证明:若对内任一收敛数列极限都存在,则在上一致连续.证明:(1)若,且令为.则,且由题设知存在,而与为的两个子列,因此,.(2)假设在不一致连续,则存在正数,对任给的,存在,使得.取,则存在,使得因,为有界数列,因此存在收敛的子列,因,因此由的结论知即.与矛盾因此,在上必一致连续.2010年华侨大学725数学分析(A)考研真题2009年华侨大学727数学分析(B)考研真题2008年华侨大学727数学分析(A)考研真题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 研究生考试

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服