收藏 分销(赏)

双曲线教案设计.doc

上传人:w****g 文档编号:3085787 上传时间:2024-06-17 格式:DOC 页数:6 大小:103KB
下载 相关 举报
双曲线教案设计.doc_第1页
第1页 / 共6页
双曲线教案设计.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
《 2.2.1 双曲线及其标准方程 》 教学设计 《 2.2.1 双曲线及其标准方程 》 教学设计 教学目标: (1)理解双曲线的定义,掌握双曲线标准方程. (2)通过定义及标准方程的挖掘与探究 ,使学生进一步体验类比、数形结合等思想方法的运用,提高学生观察问题、探究问题、归纳问题的能力. (3)亲历双曲线及其标准方程的获得过程,体会数学的理性与严谨,感受数学美的熏陶. 教学重点:理解双曲线的定义,掌握双曲线的标准方程. 教学难点:双曲线标准方程的推导与化简. 教学方法:启发式与探究式相结合. 教学过程与操作设计: (一) 创设情景,引入课题 1、知识回顾 问题1:椭圆的定义是什么? 问题2:若把椭圆定义中的“与两定点的距离之和”改为“距离之差”,这时轨迹又是什么呢? 也就是:平面内与两定点、距离的差等于一个非零常数的点的轨迹是什么图形? 【设计意图】 通过一个知识冲突的教学情景,由和到差,不仅加强新旧知识的联系,而且通过学生类比和与差,促进学生思考,激发他们的求知欲望. 2、观察动画、动手作图 取出生活中常见的一条拉链,随着拉链的拉开闭合,通过观察,引导学生思考拉链拉开的两部分长度的内在联系.通过播放这个拉链的演示实验,让学生观察动画,了解双曲线的画法,再由学生画另一支曲线.最后教师给出这两条曲线合起来叫双曲线,其中每一条叫双曲线的一支,顺利引入课题. 【设计意图】 通过观察动画和动手作图,使学生从空洞的数学分析转化为感受图形的实际变化.这一环节使学生体会双曲线定义的获得过程,培养了学生观察、归纳能力. (二) 探究发现,挖掘新知 1、定义的归纳 (1)提出问题1:这条曲线上的点满足的条件?同样使学生找到另一条曲线上的点满足的条件. 提出问题2:用一个数学式子表达这两条曲线上的点满足的条件. 根据讨论总结出:1、(1)|MF1|-|MF2|=|F2F|= 2a (2) |MF2|-|MF1|=|F1F|= 2a 2、| |MF1|-|MF2| | = 2a 2a是定值, 2a < |F1F2|. 通过以上分析,由学生归纳双曲线定义. 【设计意图】 通过自主探究,体会双曲线任一点所满足的条件,提高学生分析问题、归纳问题的能力. (2)通过椭圆和双曲线的定义的学习,知道它们是满足一定条件的点的轨迹,让学生发现两个定义的区别.教师总结学习定义的作用,可以用来判断曲线的形状. 【设计意图】 通过师生、生生的交流合作,使学生理解双曲线定义.学会利用定义判断曲线形状. 2、标准方程的推导 (1)学习了双曲线定义后给出两组图片,一组是学生熟悉的热电厂冷却塔和广州新电视塔,它们的外形与轴截面的交线是双曲线.另一组是飞机导航的双曲线定位法和创建的双曲线型交通结构. 【设计意图】 这些图片使学生感受到数学美,体会数学的实用性,对双曲线进一步形成清晰的感性认知,为推导双曲线标准方程的理性认知打下基础. (2)了解了双曲线的定义后,我们下面来研究一下双曲线的标准方程怎样推导,请大家类比椭圆方程的推导过程,说出双曲线标准方程推导步骤是什么(请学生回答教师给予点评) 【设计意图】 进一步巩固用类比的方法解决圆锥曲线的问题.由于学生没有学习一般曲线的轨迹推导步骤,所以不用上升的理论太高,只需让学生类比椭圆即可. 【问题解决】 ①建 系 以所在直线为轴,线段的垂直平分线为轴,建立直角坐标系. ②设点 设双曲线上任意一点,双曲线的焦距为 (),,,常数 ③列 式 即 ④化 简 得 两边同除以得 令()代人得 其中 这个方程叫做双曲线的标准方程.它表示焦点在轴上. 讨论:以上是焦点在轴上的情况,对于焦点在轴上的情形是什么样的呢? 【设计意图】 在第四步化简过程中,由于学生已经学习过椭圆标准方程的化简,学生根据两方程形式的相似性,学生很容易使用同样的方法化简.因此,将本式子的化简作为一个研究性题目,交由各小组讨论,在课堂上展示本题后,通过教师巡视,请化简较好的小组派代表在黑板上书写,顺利突破难点. 此环节使学生经历双曲线标准方程的获得过程,体验数形结合思想在解决几何问题的优越性,形成锲而不舍的钻研精神和科学的态度. 3、方程的对比 推导出双曲线的两种标准方程后,让学生通过找出他们的相同点、不同点,自己探究出根据标准方程判断焦点位置的方法,同时回忆椭圆中的判断方法,起到复习对比作用. (三)题组训练、应用新知 练习1、判断下列方程哪些表示双曲线? (1) (2) (3) (4) 练习2、方程 是否表示双曲线? 【设计意图】 第一题让学生学会利用方程判断曲线的形状和求焦点坐标,第二题让学生深化利用双曲线标准方程判断焦点位置的方法. 【例题讲解】 例1 已知两定点为,求动点M到F1、F2的距离的差的绝对值等于6的轨迹方程. 变式1、若已知F1 (0,-5),F2(0,5) . 2、例1改求“动点M到F1、F2的距离的差等于6的轨迹方程”. 【设计意图】 本例题是书本例题的改动,既考察了定义的理解,又考察了待定系数法求曲线方程.变式训练1、通过定点位置的变化引起方程形式的变化,强化两种方程形式的区别与联系.变式训练2、让学生深刻体会双曲线定义中关键词“绝对值”的必要性,体会数学的理性和严谨. (四)畅谈收获、感悟新知 知识小结:找学生填表格总结本节课学习的双曲线的定义及其标准方程.通过本节课的学习除了知识方面的学习,还有哪些其他方面的收获? 【设计意图】 通过学生畅谈收获,学生不仅有知识技能方面的,还有情感价值观等多方面的收获,提高学生的自我认知能力. (五) 课后拓展、巩固提高 基础作业:1、课本第54页习题A组第1、2题 能力作业:2、已知双曲线 的左右焦点分别是F1、F2 ,点P在双曲线的右支上,且满足 . 求 , . 【设计意图】 分层次作业可以满足不同学习阶段学生的学习需求. 板书设计: §2.2.1 双曲线及其标准方程 一、 双曲线的定义 例1 二、 双曲线的标准方程 练习 焦点在x轴上 焦点在y轴上
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服