收藏 分销(赏)

2023届江西省吉水中学高一上数学期末质量检测模拟试题含解析.doc

上传人:丰**** 文档编号:3075951 上传时间:2024-06-15 格式:DOC 页数:12 大小:914.54KB
下载 相关 举报
2023届江西省吉水中学高一上数学期末质量检测模拟试题含解析.doc_第1页
第1页 / 共12页
2023届江西省吉水中学高一上数学期末质量检测模拟试题含解析.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述
2022-2023学年高一上数学期末模拟试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1.已知关于的方程的两个实数根分别是、,若,则的取值范围为( ) A. B. C. D. 2.函数f(x)=log3x-8+2x的零点一定位于区间 A. B. C. D. 3.不等式成立x的取值集合为( ) A. B. C. D. 4.命题任意圆的内接四边形是矩形,则为() A.每一个圆的内接四边形是矩形 B.有的圆的内接四边形不是矩形 C.所有圆的内接四边形不是矩形 D.存在一个圆内接四边形是矩形 5.在中,角、、的对边分别为、、,已知,,,则 A. B. C. D. 6.若,,则下列结论正确的是() A. B. C. D. 7.某地区小学、初中、高中三个学段学生视力情况有较大差异,而男、女生视力情况差异不大,为了解该地区中小学生的视力情况,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层随机抽样 C.按学段分层随机抽样 D.其他抽样方法 8.已知角为第四象限角,则点位于() A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是( ) A. B.2 C. D.2 10.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:) A.6天 B.7天 C.8天 D.9天 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为 “倍缩函数”,则实数的取值范围是_______ 12.已知扇形的圆心角为120°,半径为3,则扇形的面积是________. 13.若一个扇形的周长为,圆心角为2弧度,则该扇形的面积为__________ 14.函数的图象一定过定点,则点的坐标是________. 15.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________. 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16.设全集,集合, (1)当时,求; (2)若,求实数的取值范围 17.已知函数为定义在上的奇函数. (1)求的值域; (2)解不等式: 18.如图,在棱长为2的正方体中,E,F分别是棱的中点. (1)证明:平面; (2)求三棱锥的体积. 19.已知向量,满足,,且,的夹角为. (1)求; (2)若,求的值. 20.计算: 21.某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低? (2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额. 参考答案 一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、D 【解析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围. 【详解】由题意,知,因为,所以. 又有两个实根、,所以,解得. 故选:D. 2、B 【解析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B 考点:零点存在性定理 3、B 【解析】先求出时,不等式的解集,然后根据周期性即可得答案. 【详解】解:不等式, 当时,由可得,又最小正周期为, 所以不等式成立的x的取值集合为. 故选:B. 4、B 【解析】全称命题的否定特称命题,任意改为存在,把结论否定. 【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形, 故选:B. 5、B 【解析】分析:直接利用余弦定理求cosA. 详解:由余弦定理得cosA=故答案为B. 点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:. 6、C 【解析】根据不等式的性质,逐一分析选项,即可得答案. 【详解】对于A:因为,所以,因为,所以,故A错误; 对于B:因为,所以,且,所以,故B错误; 对于C:因为,所以,又,所以,故C正确; 对于D:因为,,所以,所以,故D错误. 故选:C 7、C 【解析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样. 【详解】因为某地区小学、初中、高中三个学段学生的视力情况有较大差异,男、女生视力情况差异不大,然而学段的视力情况有较大差异,则应按学段分层抽样, 故选:. 8、C 【解析】根据三角函数的定义判断、的符号,即可判断. 【详解】因为是第四象限角,所以,,则点位于第三象限, 故选:C 9、D 【解析】可以将三棱锥侧面展开,将计算周长最小值转化成计算两点间距离最小值,解三角形,即可得出答案. 【详解】将三棱锥的侧面展开,如图 则将求截面 周长的最小值,转化成计算的最短距离, 结合题意可知=,,所以,故 周长最小值为,故选D. 【点睛】本道题目考查了解三角形的知识,可以将空间计算周长最小值转化层平面计算两点间的最小值,即可. 10、B 【解析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为,,,所以可以得到 ,由题意可知, 所以至少需要7天,累计感染病例数增加至的4倍 故选:B 二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11、 【解析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围. 【详解】因为函数为“倍缩函数”,即满足存在,使在上的值域是, 由复合函数单调性可知函数在上是增函数 所以,则,即 所以方程有两个不等实根,且两根都大于0. 令,则,所以方程变为:. 则,解得 所以实数的取值范围是. 故答案为: 12、 【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可. 【详解】扇形的圆心角为120°,即,故扇形面积. 故答案为:. 13、4 【解析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积 【详解】设扇形的半径为:R,所以2R+2R=8,所以R=2,扇形的弧长为:4,半径为2, 扇形的面积为:4(cm2) 故答案为4 【点睛】本题是基础题,考查扇形的面积公式的应用,考查计算能力 14、 【解析】令,得,再求出即可得解. 【详解】令,得,, 所以点的坐标是. 故答案: 15、30° 【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角). ∵OC⊂平面BB′C′C,AB⊥平面BB′C′C, ∴OC⊥AB.又OC⊥OB,AB∩BO=B, ∴OC⊥平面ABO.又AO⊂平面ABO, ∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°. 即AO与A′C′所成角度数为30°. 点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下: ①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.) 16、(1)或;(2) 【解析】(1)由得到,然后利用集合的补集和交集运算求解. (2)化简集合,根据,分和两种情况求解. 【详解】(1)当时, 或, 或. (2), 若, 则当时,, 不成立 , 解得, 的取值范围是. 17、(1) (2) 【解析】(1)根据函数的奇偶性可得,进而可得函数的单调性及值域; (2)由(1)可得该不等式为,根据函数的单调性解不等式即可. 【小问1详解】 由题意可知,,解得,则, 经检验,恒成立, 令,则, 函数在单调递增, 函数的值域为 【小问2详解】 由(1)得,则 , , , 不等式的解集为. 18、(1)证明见解析(2) 【解析】(1)连接,设,连接EF,EO,利用中位线和正方体的性质证明四边形是平行四边形,进而可证平面; (2)由平面可得点F,到平面的距离相等,则,进而求得三棱锥的体积即可 【详解】(1)证明:连接,设,连接EF,EO, 因为E,F分别是棱的中点,所以,, 因为正方体,所以,, 所以,, 所以四边形是平行四边形, 所以, 又平面,平面, 所以平面 (2)由(1)可得点F,到平面的距离相等, 所以, 又三棱锥的高为棱长,即, , 所以. 所以 【点睛】本题考查线面平行的证明,考查三棱锥的体积,考查转化思想 19、(1)-12;(2)12. 【解析】(1)按照向量的点积公式得到,再由向量运算的分配律得到结果;(2)根据向量垂直得到,按照运算公式展开得到结果即可. 【详解】(1)由题意得, ∴ (2)∵,∴,∴, ∴,∴ 【点睛】这个题目考查了向量的点积运算,以及向量垂直的转化;向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 20、(1)(2)0 【解析】(1)根据对数的运算法则和幂的运算法则计算 (2)根据特殊角三角函数值计算 【详解】解: ; 【点睛】本题考查指数与对数的运算,考查三角函数的计算.属于基础题 21、(1)400吨;(2)该工厂每月废气回收再利用不获利,月最大亏损额为27500元. 【解析】 (1)由题意可知,二氧化碳每吨的平均处理成本为,化简后再利用基本不等式即可求出最小值. (2)该单位每月获利为元,则,由的范围,利用二次函数的性质得到的范围即可得结论 【详解】(1)由题意可知,二氧化碳每吨的平均处理成本为 , 当且仅当,即时等号成立, 故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为150元. (2)不获利,设该单位每月获利为元, 则 , 因为, 所以时取最大值,时取最小值, 所以. 故该工厂每月废气回收再利用不获利,月最大亏损额为27500元. 【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服