1、 小升初数学总复习资料 一、基本概念第一章 数和数运算一 概念(一)整数1 整数意义自然数和0都是整数。2 自然数咱们在数物体时候,用来体现物体个数1,2,3叫做自然数。一种物体也没有,用0体现。0也是自然数。3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间进率都是10。这样计数法叫做十进制计数法。4 数位计数单位按照一定次序排列起来,它们所占位置叫做数位。5数整除整数a除以整数b(b 0),除得商是整数而没有余数,咱们就说a能被b整除,或者说b能整除a 。假如数a能被数b(b 0)整除,a就叫做b倍数,b就叫做a因数(或a约数)。倍数和因数是互相依
2、存。由于35能被7整除,因此35是7倍数,7是35因数。一种数因数个数是有限,其中最小因数是1,最大 因数是它自身。例如:10因数有1、2、5、10,其中最小因数是1,最大因数是10。一种数倍数个数是无限,其中最小倍数是它自身。3倍数有:3、6、9、12其中最小倍数是3 ,没有最大倍数。个位上是0、2、4、6、8数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5数,都能被5整除,例如:5、30、405都能被5整除。一种数各位上数和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一种数各位数上和能被9整除,这个数就能被9整除。能被3整除数不一定能
3、被9整除,不过能被9整除数一定能被3整除。一种数末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。一种数末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除数叫做偶数。不能被2整除数叫做奇数。0也是偶数。自然数按能否被2 整除特性可分为奇数和偶数。一种数,假如只有1和它自身两个因数,这样数叫做质数(或素数),100以内质数有:2、3、5、7、11、13、17、19、23
4、、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一种数,假如除了1和它自身尚有别因数,这样数叫做合数,例如 4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。假如把自然数按其因数个数不一样分类,可分为质数、合数和1。每个合数都可以写成几种质数相乘形式。其中每个质数都是这个合数因数,叫做这个合数质因数,例如15=35,3和5 叫做15质因数。把一种合数用质因数相乘形式体现出来,叫做分解质因数。例如把28分解质因数几种数公有因数,叫做这几种数公因数。其中最大一种,叫做这几种数最大公因数,例如12因数有1、2、3、
5、4、6、12;18因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8公因数,6是它们最大公因数。公因数只有1两个数,叫做互质数,成互质关系两个数,有下列几种状况:1和任何自然数互质。相邻两个自然数互质。两个不一样质数互质。当合数不是质数倍数时,这个合数和这个质数互质。两个合数公因数只有1时,这两个合数互质,假如几种数中任意两个都互质,就说这几种数两两互质。假如较小数是较大数因数,那么较小数就是这两个数最大公因数。假如两个数是互质数,它们最大公因数就是1。几种数公有倍数,叫做这几种数公倍数,其中最小一种,叫做这几种数最小公倍数,如2倍数有2、4、6 、8、10、12、14、16、
6、18 3倍数有3、6、9、12、15、18 其中6、12、18是2、3公倍数,6是它们最小公倍数。假如较大数是较小数倍数,那么较大数就是这两个数最小公倍数。假如两个数是互质数,那么这两个数积就是它们最小公倍数。几种数公因数个数是有限,而几种数公倍数个数是无限。(二)小数1 小数意义把整数1平均提成10份、100份、1000份 得到十分之几、百分之几、千分之几 可以用小数体现。一位小数体现十分之几,两位小数体现百分之几,三位小数体现千分之几一种小数由整数某些、小数某些和小数点某些构成。数中圆点叫做小数点,小数点左边数叫做整数某些,小数点左边数叫做整数某些,小数点右边数叫做小数某些。在小数里,每相
7、邻两个计数单位之间进率都是10。小数某些最高分数单位“十分之一”和整数某些最低单位“一”之间进率也是10。2小数分类纯小数:整数某些是零小数,叫做纯小数。例如: 0.25 、0.368 都是纯小数。带小数:整数某些不是零小数,叫做带小数。 例如: 3.25 、5.26 都是带小数。有限小数:小数某些数位是有限小数,叫做有限小数。 例如: 41.7 、25.3 、0.23 都是有限小数。无限小数:小数某些数位是无限小数,叫做无限小数。 例如: 4.33 3.1415926 无限不循环小数:一种数小数某些,数字排列无规律且位数无限,这样小数叫做无限不循环小数。 例如:循环小数:一种数小数某些,有一
8、种数字或者几种数字依次不停反复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109 一种循环小数小数某些,依次不停反复出现数字叫做这个循环小数循环节。 例如: 3.99 循环节是“ 9 ” , 0.5454 循环节是“ 54 ” 。纯循环小数:循环节从小数某些第一位开始,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节不是从小数某些第一位开始,叫做混循环小数。 3.1222 0.03333 写循环小数时候,为了简便,小数循环某些只需写出一种循环节,并在这个循环节首、末位数字上各点一种圆点。假如循环 节只有 一种数字,就只在它上面点一种点。例如:
9、 3.777 简写作 0.5302302 简写作 。(三)分数1 分数意义把单位“1”平均提成若干份,体现这样一份或者几份数叫做分数。在分数里,中间横线叫做分数线;分数线下面数,叫做分母,体现把单位“1”平均提成多少份;分数线下面数叫做分子,体现有这样多少份。把单位“1”平均提成若干份,体现其中一份数,叫做分数单位。2 分数分类真分数:分子比分母小分数叫做真分数。真分数不不小于1。假分数:分子比分母大或者分子和分母相等分数,叫做假分数。假分数不不不小于或等于1。带分数:假分数可以写成整数与真分数合成数,一般叫做带分数。3 约分和通分把一种分数化成同它相等不过分子、分母都比较小分数 ,叫做约分。
10、分子分母是互质数分数,叫做最简分数。把异分母分数分别化成和本来分数相等同分母分数,叫做通分。(四)百分数1 体现一种数是另一种数百分之几数 叫做百分数,也叫做百分率 或比例。百分数通常用%来体现。百分号是体现百分数符号。 二 措施(一)数读法和写法1. 整数读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级读法去读,再在背面加一种“亿”或“万”字。每一级末尾0都不读出来,其他数位持续有几种0都只读一种零。2. 整数写法:从高位到低位,一级一级地写,哪一种数位上一种单位也没有,就在那个数位上写0。3. 小数读法:读小数时候,整数某些按照整数读法读,小数点读作“点”,小数某些从左向右顺次
11、读出每一位数位上数字。4. 小数写法:写小数时候,整数某些按照整数写法来写,小数点写在个位右下角,小数某些顺次写出每一种数位上数字。5. 分数读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数读法来读。6. 分数写法:先写分数线,再写分母,最终写分子,按照整数写法来写。7. 百分数读法:读百分数时,先读百分之,再读百分号前面数,读数时按照整数读法来读。8. 百分数写法:百分数一般不写成分数形式,而在本来分子背面加上百分号“%”来体现。(二)数改写一种较大多位数,为了读写以便,常常把它改写成用“万”或“亿”作单位数。有时还可以根据需要,省略这个数某一位背面数,写成近似数。1. 精
12、确数:在实际生活中,为了计数简便,可以把一种较大数改写成以万或亿为单位数。改写后数是原数精确数。 例如把 改写成以万做单位数是 125430 万;改写成 以亿做单位 数 12.543 亿。2. 近似数:根据实际需要,咱们还可以把一种较大数,省略某一位背面尾数,用一种近似数来体现。 例如: 省略亿背面尾数是 13 亿。3. 四舍五入法:要省略尾数最高位上数是4 或者比4小,就把尾数去掉;假如尾数最高位上数是5或者比5大,就把尾数舍去,并向它前一位进1。例如:省略 345900 万背面尾数约是 35 万。省略 亿背面尾数约是 47 亿。4. 大小比较1. 比较整数大小:比较整数大小,位数多那个数就
13、大,假如位数相似,就看最高位,最高位上数大,那个数就大;最高位上数相似,就看下一位,哪一位上数大那个数就大。2. 比较小数大小:先看它们整数某些,整数某些大那个数就大;整数某些相似,十分位上数大那个数就大;十分位上数也相似,百分位上数大那个数就大3. 比较分数大小:分母相似分数,分子大分数比较大;分子相似数,分母小分数大。分数分母和分子都不相似,先通分,再比较两个数大小。(三)数互化1. 小数化成分数:本来有几位小数,就在1背面写几种零作分母,把本来小数去掉小数点作分子,能约分要约分。2. 分数化成小数:用分母清除分子。能除尽就化成有限小数,有不能除尽,不能化成有限小数,一般保留三位小数。3.
14、 一种最简分数,假如分母中除了2和5以外,不具有其她质因数,这个分数就能化成有限小数;假如分母中具有2和5 以外质因数,这个分数就不能化成有限小数。4. 小数化成百分数:只要把小数点向右移动两位,同步在背面添上百分号。5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同步把小数点向左移动两位。6. 分数化成百分数:一般先把分数化成小数(除不尽时,一般保留三位小数),再把小数化成百分数。7. 百分数化成小数:先把百分数改写成分数,能约分要约成最简分数。(四)数整除1. 把一种合数分解质因数,通常用短除法。先用能整除这个合数质数清除,一直除到商是质数为止,再把除数和商写成连乘形式。2. 求
15、几种数最大公因数措施是:先用这几种数公因数持续清除,一直除到所得商只有公因数1为止,然后把所有除数连乘求积,这个积就是这几种数最大公因数 。3. 求几种数最小公倍数措施是:先用这几种数(或其中某些数)公因数清除,一直除到互质(或两两互质)为止,然后把所有除数和商连乘求积,这个积就是这几种数最小公倍数。4. 成为互质关系两个数:1和任何自然数互质 ; 相邻两个自然数互质; 当合数不是质数倍数时,这个合数和这个质数互质; 两个合数公约数只有1时,这两个合数互质。(五) 约分和通分约分措施:用分子和分母公约数(1除外)清除分子、分母;一般要除到得出最简分数为止。通分措施:先求出本来几种分数分母最小公
16、倍数,然后把各分数化成用这个最小公倍数作分母分数。 三 性质和规律(一)商不变规律商不变规律:在除法里,被除数和除数同步扩大或者同步缩小相似倍,商不变。(二)小数性质小数性质:在小数末尾添上零或者去掉零小数大小不变。(三)小数点位置移动引起小数大小变化1. 小数点向右移动一位,本来数就扩大10倍;小数点向右移动两位,本来数就扩大100倍;小数点向右移动三位,本来数就扩大1000倍2. 小数点向左移动一位,本来数就缩小10倍;小数点向左移动两位,本来数就缩小100倍;小数点向左移动三位,本来数就缩小1000倍3. 小数点向左移或者向右移位数不够时,要用“0补足位。(四)分数基本性质分数基本性质:
17、分数分子和分母都乘以或者除以相似数(零除外),分数大小不变。(五)分数与除法关系1. 被除数除数= 被除数/除数2. 由于零不能作除数,因此分数分母不能为零。3. 被除数 相称于分子,除数相称于分母。 四 运算意义(一)整数四则运算1整数加法:把两个数合并成一种数运算叫做加法。在加法里,相加数叫做加数,加得数叫做和。加数是某些数,和是总数。加数+加数=和 一种加数=和另一种加数2整数减法:已知两个加数和与其中一种加数,求另一种加数运算叫做减法。在减法里,已知和叫做被减数,已知加数叫做减数,未知加数叫做差。被减数是总数,减数和差分别是某些数。加法和减法互为逆运算。3整数乘法:求几种相似加数和简便
18、运算叫做乘法。在乘法里,相似加数和相似加数个数都叫做因数。相似加数和叫做积。在乘法里,0和任何数相乘都得0. 1和任何数相乘都任何数。一种因数 一种因数 =积 一种因数=积另一种因数4 整数除法:已知两个因数积与其中一种因数,求另一种因数运算叫做除法。在除法里,已知积叫做被除数,已知一种因数叫做除数,所求因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。由于0和任何数相乘都得0,因此任何一种数除以0,均得不到一种确定商。被除数除数=商 除数=被除数商 被除数=商除数(二)小数四则运算1. 小数加法:小数加法意义与整数加法意义相似。是把两个数合并成一种数运算。2. 小数减法:小数减法意义
19、与整数减法意义相似。已知两个加数和与其中一种加数,求另一种加数运算.3. 小数乘法:小数乘整数意义和整数乘法意义相似,就是求几种相似加数和简便运算;一种数乘纯小数意义是求这个数十分之几、百分之几、千分之几是多少。4. 小数除法:小数除法意义与整数除法意义相似,就是已知两个因数积与其中一种因数,求另一种因数运算。5. 乘方:求几种相似因数积运算叫做乘方。例如 3 3 =32(三)分数四则运算1. 分数加法:分数加法意义与整数加法意义相似。 是把两个数合并成一种数运算。2. 分数减法:分数减法意义与整数减法意义相似。已知两个加数和与其中一种加数,求另一种加数运算。3. 分数乘法:分数乘法意义与整数
20、乘法意义相似,就是求几种相似加数和简便运算。4. 乘积是1两个数叫做互为倒数。5. 分数除法:分数除法意义与整数除法意义相似。就是已知两个因数积与其中一种因数,求另一种因数运算。(四)运算定律1. 加法互换律:两个数相加,互换加数位置,它们和不变,即a+b=b+a 。2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一种数相加它们和不变,即(a+b)+c=a+(b+c) 。3. 乘法互换律:两个数相乘,互换因数位置它们积不变,即ab=ba。4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一种数相乘,它们积不变
21、,即(ab)c=a(bc) 。5. 乘法分派律:两个数和与一种数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc 。6. 减法性质:从一种数里持续减去几种数,可以从这个数里减去所有减数和,差不变,即a-b-c=a-(b+c) 。(五)运算法则1. 整数加法计算法则:相似数位对齐,从低位加起,哪一位上数相加满十,就向前一位进一。2. 整数减法计算法则:相似数位对齐,从低位加起,哪一位上数不够减,就从它前一位退一作十,和本位上数合并在一起,再减。3. 整数乘法计算法则:先用一种因数每一位上数分别去乘另一种因数各个数位上数,用因数哪一位上数去乘,乘得数末尾就对齐哪一位,
22、然后把各次乘得数加起来。4. 整数除法计算法则:先从被除数高位除起,除数是几位数,就看被除数前几位; 假如不够除,就多看一位,除到被除数哪一位,商就写在哪一位上面。假如哪一位上不够商1,要补“0”占位。每次除得余数要不不小于除数。5. 小数乘法法则:先按照整数乘法计算法则算出积,再看因数中共有几位小数,就从积右边起数出几位,点上小数点;假如位数不够,就用“0”补足。6. 除数是整数小数除法计算法则:先按照整数除法法则清除,商小数点要和被除数小数点对齐;假如除到被除数末尾仍有余数,就在余数背面添“0”,再继续除。7. 除数是小数除法计算法则:先移动除数小数点,使它变成整数,除数小数点也向右移动几
23、位(位数不够补“0”),然后按照除数是整数除法法则进行计算。8. 同分母分数加减法计算措施:同分母分数相加减,只把分子相加减,分母不变。9. 异分母分数加减法计算措施:先通分,然后按照同分母分数加减法法则进行计算。10. 带分数加减法计算措施:整数某些和分数某些分别相加减,再把所得数合并起来。11. 分数乘法计算法则:分数乘整数,用分数分子和整数相乘积作分子,分母不变;分数乘分数,用分子相乘积作分子,分母相乘积作分母。12. 分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数倒数。(六) 运算次序1. 小数四则运算运算次序和整数四则运算次序相似。2. 分数四则运算运算次序和整数四则运算次
24、序相似。3. 没有括号混合运算:同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。4. 有括号混合运算:先算小括号里面,再算中括号里面,最终算括号外面。5. 第一级运算:加法和减法叫做第一级运算。6. 第二级运算:乘法和除法叫做第二级运算。五 应用(一)整数和小数应用1 简朴应用题(1) 简朴应用题:只具有一种基本数量关系,或用一步运算解答应用题,一般叫做简朴应用题。(2) 解题环节:a 审题理解题意:理解应用题内容,懂得应用题条件和问题。读题时,不丢字不添字边读边思索,弄明白题中每句话意思。也可以复述条件和问题,协助理解题意。b选用算法和列式计算:这是解答应用题中心工作。从题目中
25、告诉什么,规定什么着手,逐渐根据所给条件和问题,联络四则运算含义,分析数量关系,确定算法,进行解答并标明对旳单位名称。C检查:就是根据应用题条件和问题进行检查看所列算式和计算过程与否对旳,与否符合题意。假如发现错误,立即改正。2 复合应用题(1)有两个或两个以上基本数量关系构成,用两步或两步以上运算解答应用题,一般叫做复合应用题。(2)具有三个已知条件两步计算应用题。求比两个数和多(少)几种数应用题。比较两数差与倍数关系应用题。(3)具有两个已知条件两步计算应用题。已知两数相差多少(或倍数关系)与其中一种数,求两个数和(或差)。已知两数之和与其中一种数,求两个数相差多少(或倍数关系)。(4)解
26、答连乘连除应用题。(5)解答三步计算应用题。(6)解答小数计算应用题:小数计算加法、减法、乘法和除法应用题,她们数量关系、构造、和解题方式都与正式应用题基本相似,只是在已知数或未知数中间具有小数。d答案:根据计算成果,先口答,逐渐过渡到笔答。( 3 ) 解答加法应用题:a求总数应用题:已知甲数是多少,乙数是多少,求甲乙两数和是多少。b求比一种数多几数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。(4 ) 解答减法应用题:a求剩余应用题:从已知数中去掉一某些,求剩余某些。 -b求两个数相差多少应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。c求比一种数少几数应用题
27、:已知甲数是多少,乙数比甲数少多少,求乙数是多少。(5 ) 解答乘法应用题:a求相似加数和应用题:已知相似加数和相似加数个数,求总数。b求一种数几倍是多少应用题:已知一种数是多少,另一种数是它几倍,求另一种数是多少。( 6) 解答除法应用题:a把一种数平均提成几份,求每一份是多少应用题:已知一种数和把这个数平均提成几份,求每一份是多少。b求一种数里包括几种另一种数应用题:已知一种数和每份是多少,求可以提成几份。C 求一种数是另一种数几倍应用题:已知甲数乙数各是多少,求较大数是较小数几倍。d已知一种数几倍是多少,求这个数应用题。(7)常用数量关系:总价= 单价数量旅程= 速度时间工作总量=工作时
28、间工效总产量=单产量数量 3经典应用题具有独特构造特性和特定解题规律复合应用题,一般叫做经典应用题。(1)平均数问题:平均数是等分除法发展。解题关键:在于确定总数量和与之相对应总份数。算术平均数:已知几种不相等同类量和与之相对应份数,求平均每份是多少。数量关系式:数量之和数量个数=算术平均数。加权平均数:已知两个以上若干份平均数,求总平均数是多少。数量关系式 (某些平均数权数)总和(权数和)=加权平均数。 差额平均数:是把各个不不不小于或不不小于原则数某些之和被总份数均分,求是原则数与各数相差之和平均数。数量关系式:(大数小数)2=小数应得数 最大数与各数之差和总份数=最大数应给数 最大数与个
29、数之差和总份数=最小数应得数。例:一辆汽车以每小时 100 千米 速度从甲地开往乙地,又以每小时 60 千米速度从乙地开往甲地。求这辆车平均速度。分析:求汽车平均速度同样可以运用公式。此题可以把甲地到乙地旅程设为“ 1 ”,则汽车行驶总旅程为“ 2 ”,从甲地到乙地速度为 100 ,所用时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用时间是 ,汽车共行时间为 + = ,汽车平均速度为 2 =75 (千米) (2) 归一问题:已知互有关联两个量,其中一种量变化,另一种量也随之而变化,其变化规律是相似,这种问题称之为归一问题。根据求“单一量”环节多少,归一问题可以分为一次归一问题,两次归一问题
30、。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”归一问题。又称“单归一。”两次归一问题,用两步运算就能求出“单一量”归一问题。又称“双归一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算成果归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算成果归一问题。解题关键:从已知一组对应量中用等分除法求出一份数量(单一量),然后以它为原则,根据题目规定算出成果。数量关系式:单一量份数=总数量(正归一)总数量单一量=份数(反归一)例 一种织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930
31、 米 ,需要多少天?分析:必要先求出平均每天织布多少米,就是单一量。 693 0 ( 477 4 31 ) =45 (天) (3)归总问题:是已知单位数量和计量单位数量个数,以及不一样单位数量(或单位数量个数),通过求总数量求得单位数量个数(或单位数量)。特点:两种有关联量,其中一种量变化,另一种量也跟着变化,不过变化规律相反,和反比例算法彼此相通。数量关系式:单位数量单位个数另一种单位数量 = 另一种单位数量 单位数量单位个数另一种单位数量= 另一种单位数量。例 修一条水渠,原筹划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?分析:由于规定出每天修长度,就必要先求出水
32、渠长度。因此也把此类应用题叫做“归总问题”。不一样之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 6 4=1200 (米) (4) 和差问题:已知大小两个数和,以及她们差,求这两个数各是多少应用题叫做和差问题。解题关键:是把大小两个数和转化成两个大数和(或两个小数和),然后再求另一种数。解题规律:(和差)2 = 大数 大数差=小数(和差)2=小数 和小数= 大数例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求本来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,目前
33、把乙数转化成 2 个乙班,即 9 4 12 ,由此得到目前乙班是( 9 4 12 ) 2=41 (人),乙班在调出 46 人之前应当为 41+46=87 (人),甲班为 9 4 87=7 (人) (5)和倍问题:已知两个数和及它们之间倍数 关系,求两个数各是多少应用题,叫做和倍问题。解题关键:找准原则数(即1倍数)一般说来,题中说是“谁”几倍,把谁就确定为原则数。求出倍数和之后,再求出原则数量是多少。根据另一种数(也也许是几种数)与原则数倍数关系,再去求另一种数(或几种数)数量。解题规律:和倍数和=原则数 原则数倍数=另一种数例:汽车运送场有大小货车 115 辆,大货车比小货车 5 倍多 7
34、辆,运送场有大货车和小汽车各有多少辆?分析:大货车比小货车 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。列式为( 115-7 )( 5+1 ) =18 (辆), 18 5+7=97 (辆) (6)差倍问题:已知两个数差,及两个数倍数关系,求两个数各是多少应用题。解题规律:两个数差(倍数1 )= 原则数 原则数倍数=另一种数。例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样长度,成果甲所剩长度是乙绳 长 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?分析:两根绳子剪去相似一段,长度差没变,甲
35、绳所剩长度是乙绳 3 倍,实比乙绳多( 3-1 )倍,以乙绳长度为原则数。列式( 63-29 )( 3-1 ) =17 (米)乙绳剩余长度, 17 3=51 (米)甲绳剩余长度, 29-17=12 (米)剪去长度。 (7)行程问题:有关走路、行车等问题,一般都是计算旅程、时间、速度,叫做行程问题。解答此类问题首先要弄清晰速度、时间、旅程、方向、杜速度和、速度差等概念,理解她们之间关系,再根据此类问题规律解答。解题关键及规律:同步同地相背而行:旅程=速度和时间。同步相向而行:相遇时间=速度和时间同步同向而行(速度慢在前,快在后):追及时间=旅程速度差。同步同地同向而行(速度慢在后,快在前):旅程
36、=速度差时间。例 甲在乙背面 28 千米 ,两人同步同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。已知甲在乙背面 28 千米 (追击旅程), 28 千米 里包括着几种( 16-9 )千米,也就是追击所需要时间。列式 2 8 ( 16-9 ) =4 (小时) (8)流水问题:一般是研究船在“流水”中航行问题。它是行程问题中比较特殊一种类型,它也是一种和差问题。它特点重要是考虑水速在逆行和顺行中不一样作用。船速:船在静水中航行速度。水速:水流动速度。顺水速度:船顺流航
37、行速度。逆水速度:船逆流航行速度。顺速=船速水速逆速=船速水速解题关键:由于顺流速度是船速与水速和,逆流速度是船速与水速差,因此流水问题当作和差问题解答。 解题时要以水流为线索。解题规律:船行速度=(顺水速度+ 逆流速度)2流水速度=(顺流速度逆流速度)2旅程=顺流速度 顺流航行所需时间旅程=逆流速度逆流航行所需时间例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?分析:此题必要先懂得顺水速度和顺水所需要时间,或者逆水速度和逆水时间。已知顺水速度和水流 速度,因而不难算出逆水
38、速度,但顺水所用时间,逆水所用时间不懂得,只懂得顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地所用时间,这样就能算出甲乙两地旅程。列式为 284 2=20 (千米) 2 0 2 =40 (千米) 40 ( 4 2 ) =5 (小时) 28 5=140 (千米)。 (9) 还原问题:已知某未知数,通过一定四则运算后所得成果,求这个未知数应用题,咱们叫做还原问题。解题关键:要弄清每一步变化与未知数关系。解题规律:从最终成果 出发,采用与原题中相反运算(逆运算)措施,逐渐推导出原数。根据原题运算次序列出数量关系,然后采用逆运算措施计算推导出原数。解答还原问题时注意观测运算次序。
39、若需要先算加减法,后算乘除法时别忘掉写括号。例 某小学三年级四个班共有学生 168 人,假如四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为 168 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,因此四班原有人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 4-2+3=43 (人)一班原有人数列式为 168 4-6+2=38 (人);二班原有人数列式为 168 4-6+6=42 (人) 三班原有人数列式为 168 4-3+6=45 (人)。 (10)植树问
40、题:此类应用题是以“植树”为内容。但凡研究总旅程、株距、段数、棵树四种数量关系应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清与否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。解题规律:沿线段植树棵树=段数+1 棵树=总旅程株距+1株距=总旅程(棵树-1) 总旅程=株距(棵树-1)沿周长植树棵树=总旅程株距株距=总旅程棵树总旅程=株距棵树例 沿公路一旁埋电线杆 301 根,每相邻两根间距是 50 米 。后来所有改装,只埋了201 根。求改装后每相邻两根间距。分析:本题是沿线段埋电线杆,要把电线杆根数减掉一。列式为 50 ( 301-1 )( 201-1
41、) =75 (米) (11 )盈亏问题:是在等分除法基本上发展起来。 她特点是把一定数量物品,平均分派给一定数量人,在两次分派中,一次有余,一次局限性(或两次均有余),或两次都局限性),已知所余和局限性数量,求物品适量和参与分派人数问题,叫做盈亏问题。解题关键:盈亏问题解法要点是先求两次分派中分派者没份所得物品数量差,再求两次分派中各次共分物品差(也称总差额),用前一种差清除后一种差,就得到分派者数,进而再求得物品数。解题规律:总差额每人差额=人数总差额求法可以分为如下四种状况:第一次多出,第二次局限性,总差额=多出+ 局限性第一次恰好,第二次多出或局限性 ,总差额=多出或局限性第一次多出,第
42、二次也多出,总差额=大多出-小多出第一次局限性,第二次也局限性, 总差额= 大局限性-小局限性例 参与美术小组同学,每个人分相似支数色笔,假如小组 10 人,则多 25 支,假如小组有 12 人,色笔多出 5 支。求每人 分得几支?共有多少支色铅笔?分析:每个同学分到色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一种人分得 10 支。列式为( 25-5 )( 12-10 ) =10 (支) 10 12+5=125 (支)。 (12)年龄问题:将差为一定值两个数作为题中一种条件,这种应用题被称为“年龄问题”。解题
43、关键:年龄问题与和差、和倍、差倍问题类似,重要特点是伴随时间变化,年岁不停增长,但大小两个不一样年龄差是不会变化,因而,年龄问题是一种“差不变”问题,解题时,要善于运用差不变特点。例 父亲 48 岁,儿子 21 岁。问几年前父亲年龄是儿子 4 倍?分析:父子年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子 4 倍,可知父子年龄倍数差是( 4-1 )倍。这样可以算出几年前父子年龄,从而可以求出几年前父亲年龄是儿子 4 倍。列式为: 21( 48-21 )( 4-1 ) =12 (年) (13)鸡兔问题:已知“鸡兔”总头数和总腿数。求“鸡”和“兔”各多少只一类应用题。一般称为“鸡兔问题
44、”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现腿数差,可推算出某一种头数。解题规律:(总腿数鸡腿数总头数)一只鸡兔腿数差=兔子只数兔子只数=(总腿数-2总头数)2假如假设全是兔子,可以有下面式子:鸡只数=(4总头数-总腿数)2兔头数=总头数-鸡只数例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?兔子只数 ( 170-2 50 ) 2 =35 (只)鸡只数 50-35=15 (只)-(二)分数和百分数应用1 分数加减法应用题:分数加减法应用题与整数加减法应用题构造、数量关系和解题措施基本相似,所不一样只是在已知数或未知数中具有分数。2分数乘法应用题:是指已知一种数,求它几分之几是多少应用题。特性:已知单位“1”量和分率,求与分率所对应实际数量。解题关键:精确判断单位“1”量。找准规定问题所对应分率,然后根据一种数乘分数意义对旳列式。3