1、1 容易出现“只见树木,不见森林”的断裂式教学 有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,初中函数所考察的题目,大家公认二次函数最难。因此老师在教授这个函数时,也是最卖力,配备了大量的习题练习。但是老师教的辛苦,学生学得也不轻松,不但要理解那么难的曲线函数,还要做更难的习题。所以最后得到的结论是,“二次
2、函数太难了,不是所有学生都能掌握的”。其实则不然,造成这种局面的原因就是把二次函数孤立起来,一棵参天大树高不可攀,是因为你忘却了函数是片森林,二次函数应该根植在“函数森林”中。 不但二次函数如此,很多老师每逢讲一个具体函数,都让学生重新经历函数探索,猜想,设计很多环节去猜想函数具备哪些性质,学生却因这些性质之间的相近相似常常混成一团,或最终难以正确应用。 函数这一章最重要的解题方法就是待定系数法,学习正比例函数时就学习了,一次函数再次学习,反比例函数、二次函数又再次使用,但是我们发现,因为缺乏归纳待定系数法的本质,“断裂式”的教授此方法,让学生并没有掌握该解题方法,仅仅是会求解析式而已。 对于
3、以上的种种问题,我归纳的原因是,教授具体函数时,缺乏系统意识和整体意识。 函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。 关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,
4、不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。 2 “重形不重数”的现象歪曲了“数形结合”的思想 当前在初中函数教学中,教师都非常注重借助函数图象去研究函数性质,但却忽视了函数本身是一种代数模型,是对数、式、方程、不等式等代数模型的综合与统一,所以除了要借助函数图象研究函数性质外,不因忽视从“数”的角度引导学生发现与研究函数性质,比如: ( 1 )引导学生观察画正比例
5、y=2x 函数图象时所列的表格x -3 -2 -1 0 1 2 3 Y=2x -6 -4 -2 0 2 4 6 可以发现正比例函数的增减性,以及自变量与对应函数值之间成正比例 ( 2 ) 引导学生观察二次函数 的列表 x -2 -1 0 1 2 3 4 7 22 -1 -2 -1 2 7 可以发现二次函数的增减性与对称性 ( 1 )引导学生从代数的角度证明一次函数 y=-2x+3 的增减性 ( 2 )引导学生从代数的角度探索证明二次函数 的最值,顶点,对称轴 抛物线 的顶点(最高点)坐标为 (3,0),对称轴方程为 x=3 对于函数性质以及本质的认识,最终要还原到数的层面,所以在函数教学中,以
6、“形”促数固然重要,但也不能忽视学生培养学生从数的角度观察、分析、归纳、证明能力的培养 . 1 注重“类比教学” 不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法, 利用类比的思想进行教学设计实施教学 , 可称为“类比教学” . 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的 有经验的老师都会发现,初中学习的正比例函数、一次函数、
7、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学2. 注重“数学结合”的教学 数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。 函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就
8、是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则: ( 1 )让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。 ( 2 )切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的“最优化”,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。 ( 3 )注意让学生体会研究具体函数图象规律的方法:一是有特殊到一般的归纳法,二是控制参数法。