收藏 分销(赏)

正弦定理与余弦定理的证明.doc

上传人:精*** 文档编号:3064606 上传时间:2024-06-14 格式:DOC 页数:5 大小:251.50KB
下载 相关 举报
正弦定理与余弦定理的证明.doc_第1页
第1页 / 共5页
正弦定理与余弦定理的证明.doc_第2页
第2页 / 共5页
正弦定理与余弦定理的证明.doc_第3页
第3页 / 共5页
正弦定理与余弦定理的证明.doc_第4页
第4页 / 共5页
正弦定理与余弦定理的证明.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、一、正弦定理的几种证明方法abDABC1.利用三角形的高证明正弦定理(1)当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有,。由此,得 ,同理可得 , 故有 .从而这个结论在锐角三角形中成立.ABCDba(2)当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有, 。由此,得 ,同理可得 故有 .由(1)(2)可知,在ABC中, 成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即.2.利用三角形面积证明正弦定理DCBA已知ABC,设BCa, CAb,ABc,作ADBC,垂足为D.则RtADB中, ,AD=ABsi

2、nB=csinB.SABC=.同理,可证 SABC=. SABC=.absinc=bcsinA=acsinB,在等式两端同除以ABC,可得.即.3.向量法证明正弦定理(1)ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90-A,j与的夹角为90-C.由向量的加法原则可得,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到 由分配律可得. B C|j|Cos90+|j|Cos(90-C)=|j|Cos(90-A). j asinC=csinA. A 另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与的夹角为90+B,可得.(此处应

3、强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90-C,j与的夹角为90-B).CA(2)ABC为钝角三角形,不妨设A90,过点A作与垂直的单位向量j,则j与的夹角为A-90,j与的夹角为90-C.由,得j+j=j, jAB即aCos(90-C)=cCos(A-90),asinC=csinA.另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与夹角为90+B.同理,可得. 4.外接圆证明正弦定理在ABC中,已知BC=a,AC=b,AB=c,作ABC的外接圆,O为圆心,连结BO并延长交圆于B,设BB=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到BA

4、B=90,C =B,sinC=sinB=.同理,可得.这就是说,对于任意的三角形,我们得到等式.ACB法一(平面几何):在ABC中,已知,求c。过A作,在Rt中,法二(平面向量):,即:法三(解析几何):把顶点C置于原点,CA落在x轴的正半轴上,由于ABC的AC=b,CB=a,AB=c,则A,B,C点的坐标分别为A(b,0),B(acosC,asinC),C(0,0)|AB|2=(acosCb)2+(asinC0)2=a2cos2C2abcosC+b2+a2sin2C=a2+b22abcosC,即c2=a2+b22abcosC.法五(用相交弦定理证明余弦定理):如图,在三角形ABC中,A=,A

5、B=a,BC=b,AC=c。现在以B为圆心,以长边AB为半径做圆,这里要用长边的道理在于,这样能保证C点在圆内。BC的延长线交圆B于点D和E 这样以来,DC=a-b,CE=a+b,AC=c。因为AG=2acos,所以CG=2acos-c。根据相交弦定理有: DCCE=ACCG,带入以后就是 (a-b)(a+b)=c(2acos-c) 化简以后就得b2=a2+c2+2accos。也就是我们的余弦定理。如图,在ABC中,AB4 cm,AC3 cm,角平分线AD2 cm,求此三角形面积.分析:由于题设条件中已知两边长,故而联想面积公式SABCABACsinA,需求出sinA,而ABC面积可以转化为S

6、ADCSADB,而SADCACADsin,SADBABADsin,因此通过SABCSADCSADB建立关于含有sinA,sin的方程,而sinA2sincos,sin2cos21,故sinA可求,从而三角形面积可求.解:在ABC中,SABCSADBSADC,ABACsinAACADsinABADsin43sinA32sin,6sinA7sin12sincos7sinsin0,cos,又0A,0sin,sinA2sincos,SABC43sinA(cm2). 在ABC中,AB5,AC3,D为BC中点,且AD4,求BC边长.解:设BC边为x,则由D为BC中点,可得BDDC,在ADB中,cosADB在ADC中,cosADC又ADBADC180cosADBcos(180ADC)cosADC.解得,x2所以,BC边长为2.2.在ABC中,已知角B45,D是BC边上一点,AD5,AC7,DC3,求AB.解:在ADC中,cosC,又0C180,sinC在ABC中,ABAC7.3.在ABC中,已知cosA,sinB,求cosC的值.解:cosAcos45,0A45A90,sinAsinBsin30,0B0B30或150B180若B150,则BA180与题意不符.0B30 cosBcos(AB)cosAcosBsinAsinB 又C180(AB).cosCcos180(AB)cos(AB).

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服