1、上海贝岭技术研发中心项目工程塔吊基础专项方案中国二十冶建设有限公司二一年一月廿九日目 录1.工程简介12.编制依据13.塔吊基础方案13.1塔吊布置及基础概况13.2塔吊专用基础桩涉及土层参数(引自地质勘查报告)13.3格构柱、格构式塔吊基础施工要求24.格构式塔吊基础计算书34.1基本参数34.1.1塔吊基本参数34.1.2格构柱基本参数44.1.3基础参数54.1.4塔吊计算状态参数54.2非工作状态下荷载计算54.2.1塔吊受力计算54.2.2塔吊与承台连接的螺栓验算84.2.3承台验算(下述验算荷载取数均大于设计值)84.2.4单肢格构柱截面验算(下述验算荷载取数均大于设计值)104.
2、2.5整体格构柱基础验算(下述验算荷载取数均大于设计值)114.2.6桩承载力验算124.2.7桩竖向极限承载力验算124.2.8桩基础抗拔验算134.2.9桩配筋计算154.3工作状态下荷载计算154.3.1塔吊受力计算154.3.2塔吊与承台连接的螺栓验算184.3.3承台验算(下述验算荷载取数均大于设计值)184.3.4单肢格构柱截面验算(下述验算荷载取数均大于设计值)194.3.5整体格构柱基础验算(下述验算荷载取数均大于设计值)204.3.6桩承载力验算224.3.7桩竖向极限承载力验算224.3.8桩基础抗拔验算234.3.9桩配筋计算244.4桩基沉降验算254.4.1塔吊专用2
3、2m桩沉降254.4.2工程桩兼用塔基桩62m桩沉降验算274.4.3不均匀沉降计算285.塔吊基础施工图纸291.工程简介工程名称:上海贝岭技术研发中心;工程建设地点:上海市徐汇区宜山路810号;结构类型:属于框架剪力墙结构;地上19层;地下2层;建筑高度约80m。 工程建设主要参与方:本工程由上海贝岭股份有限公司投资建设,信息产业电子第十一设计研究院有限公司设计(基坑围护由同济设计研究院设计),地质勘察为浙江省工程勘察院上海分院,由上海市工程建设监理咨询有限公司监理,由中国二十冶工程建设有限公司组织施工。2.编制依据本工程地质勘察报告,塔吊安装使用说明书、钢结构设计规范(GB5001720
4、03)、钢结构设计手册(第三版)、建筑结构静力计算手册(第二版)、结构荷载规范(GB50092001)、混凝土结构设计规范(GB50010-2002)、建筑桩基技术规范(JGJ942008)、建筑地基基础设计规范(GB500072002)等。3.塔吊基础方案3.1塔吊布置及基础概况本工程使用一台徐工QTZ80E(5514)塔吊,位于南侧910轴之间;塔吊初次自由起升高度35mh040m,足以避开周边已有建筑物以及市政高压电线;塔吊最终高度约90m,配套相应附墙件(详见塔吊安装专项方案)。塔吊基础采用格构式基础,结合桩基。塔吊基础桩北侧2根桩利用850mm直径工程桩兼作塔基桩,有效桩长62m;南
5、侧设置2根塔吊专用的基础桩,有效长度22m,直径800mm,桩端进入本工程地质勘察报告所述2土层3.55m。格构柱采用L14014角钢作为主材,进入桩顶3m,详见相应图纸。地面塔吊承台采用C40混凝土配筋,厚度1.2m,长宽=4.5m3.5m。桩顶标高-9.600m,承台底标高+1.000m。详见后附塔吊基础施工图纸。3.2塔吊专用基础桩涉及土层参数(引自地质勘查报告)表一序号名称hi(m)qsik(kPa)qpk(kPa)sip1水泥土搅拌桩加固土4201.02灰色淤泥质粘土7.45201.03灰色粉质粘土8351.004灰色砂质粉土夹粉质粘土12.35511001.01.00表二序号土层厚
6、度hi(m)重度i(kN/m3)极限侧阻(kPa)压缩模量Ei(MPa)1419203027.4517.3202.553818.1353.59412.318.55517511.718.1501165.219551579.119854581818.57020910019.2100653.3格构柱、格构式塔吊基础施工要求1、格构柱端锚入混凝土承台长度不小于450mm和1/3承台厚度;混凝土强度等级不小于C35;本工程定为 格构柱端锚入混凝土承台长度不小于450mm,混凝土强度等级C40。2、格构柱锚入桩基中的长度不小于2000mm,并需增加箍筋和主筋数量,确保焊接质量桩混凝土等级不小于C30;本工
7、程格构柱锚入桩基中的长度3000mm,桩采用水下C30混凝土。3、吊(插)入桩孔时,应控制钢构柱的垂直与水平二个方向的偏位。特别需防止浇捣混凝土后钢构柱的偏位,施工方案中必须有防偏位措施(采用模具等定位方法)。4、钢构柱应在工厂制作,成品后运往工地。现场焊接水平杆与斜撑杆(柱间支撑)等构件,必须持有焊接上岗证,原则上仍应由生产厂家派员施焊。5、单肢钢构柱内部需留有足够空间,浇捣混凝土中应采取有效手段保证混凝土的填充率达到95%以上。6、开挖土方时,塔机钢构柱周围的土方应分层开挖,钢构柱之间的水平与斜撑杆(或柱间支撑),连接板等构件,必须跟随挖土深度而及时设置并焊接。7、塔机使用中,要经常观察钢
8、筋混凝土连接块的变形情况;经常观察地脚螺栓松动情况,随时拧紧;经常观察塔机的垂直度,发现超差及时纠正。8、工程桩和塔吊专用桩不均匀沉降差: 23.820-9.295=14.525mm。考虑到从塔吊开始使用到基坑大底板浇筑完成时间段约4个月,初期不均匀沉降量可估算为14.52560%=8.715mm,8.715/2200=3.9614,满足要求。在地下室大底板完成浇筑前应加强观测,及时采取纠偏措施;考虑到塔基桩端以下有4m厚的水泥土搅拌桩加固层,在灌注桩施工时,22m塔基桩可采取适当扩大桩端2m范围内的直径,减少沉降差。为进一步降低不均匀沉降,宜采取扩大桩顶以下2m范围内直径的措施(扩为850m
9、m,其余不变)。4.格构式塔吊基础计算书4.1基本参数4.1.1塔吊基本参数塔吊型号:QZT80E(5514); 标准节长度b:2.5m;塔吊自重Gt:1015.4kN(升至理论附着最高时的最重状态,加平衡配重,在起升40m时自重为50.6t至69.14t,因标准节选材的不同而不同); 最大起重荷载Q:80kN; 塔吊地脚螺栓的直径d:按塔吊说明书设置;塔吊起升高度H:40m; 塔吊地脚螺栓数目n:按塔吊说明书设置;塔身宽度B: 1.6m; 塔吊地脚螺栓性能等级:按塔吊说明书设置; 工作风压:0.25kPa 非工作风压:0.80kPa(初次起升)特别说明:抗压以全重加最大弯矩计算,桩抗拔以初升
10、40m时的重量计算,此为最不利状态。在塔吊升至最高时,通过设置4个附墙件,塔身弯矩传递至基础承台的数值非常小,仅有塔身最大弯矩的2%左右;设置第一道附墙件时仅有20%左右,此时在最下端的基础主要承受垂直压力,且届时大底板早已浇筑完成,受力状况大为简化,因此塔吊在40m初始高度进一步上升后基础的受弯矩作用力状况无需进一步复核验算。计算图举例如下:塔吊示意图受力图弯矩图综上所述,对于塔吊基础,定下如下需要验算的工况项目:塔吊40m初升独立时,工作状态、非工作状态下最大弯矩及其分别对格构柱、桩造成的最大、最小压力;塔吊升至最高140m(本工程实际仅110m左右)分别对格构柱、桩的最大竖向压力4.1.
11、2格构柱基本参数格构柱计算长度lo:10.6m; 格构柱缀件类型:缀板;格构柱缀件节间长度a1:0.8m; 格构柱分肢材料类型:L140x14;格构柱基础缀件节间长度a2:2.4m; 格构柱钢板缀件参数:宽270mm,厚12mm;格构柱截面宽度b1:0.47m; 格构柱基础缀件材料类型:L70x8;单根格构柱计算自重:2.7t4.1.3基础参数桩中心距S2S1:2.2m3m; 桩入土深度l:22m(2根工程桩62m,仅沉降验算使用); 桩直径d:0.8m(2根工程桩0.85m为便于计算,仅沉降验算使用);桩混凝土等级:水下C30; 桩型与工艺:泥浆护壁钻(冲)孔灌注桩;桩钢筋直径:20mm;
12、桩钢筋型号:HRB335;承台宽度L2 L1:3.5m4.5m; 承台厚度h:1.2m;承台混凝土等级为:C40; 承台钢筋等级:HRB335;承台钢筋直径:20; 承台保护层厚度:25mm;承台箍筋间距:250mm; 4.1.4塔吊计算状态参数地面粗糙类别:D类密集建筑群,房屋较高;风荷载高度变化系数:0.73;主弦杆材料:圆钢; 主弦杆宽度c:250mm;非工作状态:所处城市 上海, 最大允许风压0:0.8 kN/m2;额定起重力矩Me:892kNm; 基础所受水平力P:30kN;塔吊倾覆力矩M:552.37kNm(非工作状态下,起重力矩不发生); 工作状态:所处城市 上海, 最大允许风压
13、0:0.25 kN/m2,额定起重力矩Me:892kNm; 基础所受水平力P:30kN;塔吊倾覆力矩M:1089.49kNm; 4.2非工作状态下荷载计算4.2.1塔吊受力计算1、塔吊竖向力计算承台自重:Gc=25BcBch1.2=253.504.501.201.2=567.00kN格构柱系统自重:Gz=4271.2=129.60 kN作用在基础桩上的垂直力:N=1.2(Gt+Gc+Gz)=1.2(1015.40+567.00+129.60)=2050.60kN(全高)N=1.2(Gt+Gc+Gz)=1.2(506.0+567.00+129.60)=1443.12kN(初升40m,上拔力验算用
14、)N=1.2(Gt+Gc+Gz)=1.2(691.4+567.00+129.60)=1665.60kN(初升40m,压力验算用)2、塔吊风荷载计算(初升40m)地处 上海,最大允许风压0=0.8 kN/m2挡风系数计算: = (3B+2b+(4B2+b2)1/2c/Bb)挡风系数=0.87体型系数s=1.14查表得:荷载高度变化系数z=0.73高度z处的风振系数取:z=1.0所以风荷载设计值为:=0.7zsz0=0.71.001.140.730.80=0.47kN/m23、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M=BHH0.5=0.470.871.6040.0040.000.5=516.
15、77kNm总的最大弯矩值:Mmax=1.4(Me+M+Ph)=1.4(516.77+30.001.20)=552.37kNm4、塔吊水平力计算水平力:V=1.2(BH+P)=1.2(0.801.6040.000.87+30.00)=89.23kN5、每根格构柱的受力计算作用于格构柱顶面的重力作用:N=1.2(Gt+Gc)=1.2(1015.40+567.00)=1898.88kN。 Mmax=552.37kNm V=89.23kN作用在基础桩上的垂直力:N=2050.60kN(全高)N=1443.12kN(初升40m,上拔力验算用)N=1665.60kN(初升40m,压力验算用)作用在桩面弯矩
16、Mmax=552.37+1.489.2311.8(格构柱承台高度)=2026.46 kNm图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。(1)、桩顶竖向力的计算(取下述工况中的大者)全高140m时的工况(加设扶墙件,弯矩及水平力可忽略):Ni=(F+G)/4=2050.60/4=512.65 kN初升40m,竖向压力验算Ni=(F+G)/4Mxyi/yi2Myxi/xi2;式中:N单桩个数,n=4; F作用于桩基承台顶面的竖向力设计值; G桩基承台加上格构柱的自重; Mx,My承台底面的弯矩设计值; xi,yi单桩相对承台中心轴的XY方向距离; Ni单桩桩顶竖向力
17、设计值;设短边方向为x方向,长边方向为y方向。确定最不利弯矩方向:设与x方向夹角为,则单桩受力N=Msin/(22.2)+Mcos/(23);N对求导,则得出N=Mcos/(22.2)- Msin/(23),当N=0时可以得出其极值,则可得tg=3/2.2时出现最不利工况。即sin=0.8065,cos=0.5914。则有:Mx= Mmaxcos=2026.460.5914=1198.45 kNm ,My= Mmaxsin=2026.460.8065=1634.34kNm经计算得到单桩桩顶竖向力设计值最大压力:Nmax=1665.60/4+(1198.453)/(232)+ (1634.342
18、.2)/(22.22)=987.58kN最小压力:Nmi=1443.12/4-(1198.453)/(232)- (1634.342.2)/(22.22)=-210.4kN需要验算桩基础抗拔力。桩顶剪力的计算V0=V/4=89.23/4=22.31kN(2)、格构柱顶竖向力的计算(取下述工况中的大者)格构柱受力明显小于桩顶,按照桩顶受力数据进行计算。4.2.2塔吊与承台连接的螺栓验算按照塔吊说明书要求设置,不再计算。4.2.3承台验算(下述验算荷载取数均大于设计值)1、承台弯矩的计算依据建筑桩技术规范(JGJ94-2008 )的第5.9.1条。 Mx1 = Niyi My1 = Nixi其中
19、Mx1,My1计算截面处XY方向的弯矩设计值; xi,yi单桩相对承台中心轴的XY方向距离取(a-B)/2=(3.00-1.60)/2=0.700m;(取最不利值) Ni1单桩桩顶竖向力设计值去除单根格构柱重量荷载;(Mx1,My1)max=20.7(1429.63-32.53)=1955.94kNm。2、承台截面主筋的计算依据混凝土结构设计规范(GB50010-2002)第7.2条受弯构件承载力计算。 As = M/(sh0fy) s = M/(1fcbh02) = 1-(1-2s)1/2 s = 1-/2式中:l系数,当混凝土强度不超过C50时, 1取为1.0,当混凝土强度等级为C80时,
20、1取为0.94,期间按线性内插法得1.00 ; fc混凝土抗压强度设计值查表得19.10N/mm2; ho承台的计算高度ho=1200.00-25.00=1175.00mm; fy钢筋受拉强度设计值,fy=300N/mm2;经过计算得:s=935.62106/(1.00019.1004.500103(1175.000)2)=0.0105; =1-(1-20.0105)0.5=0.0106; s =1-0.0106/2=0.995; Asx =Asy=1955.94106/(0.9951175.000300)=5431mm2;由于最小配筋率为0.15%,所以最小配筋面积为:120035000.1
21、5%=6300mm2;建议配筋值:HRB335钢筋,20160。承台底面单向根数21根。实际配筋值6598.2mm2。3、承台斜截面抗剪切计算依据建筑桩技术规范(JGJ94-2008)的第5.9.9、5.9.10条。根据第二步的计算方案可以得到XY方向桩对矩形承台的最大剪切力,考虑对称性,记为V=893.80kN。我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式: 0Vfcb0h0其中:o建筑桩基重要性系数,取1.00; Bc承台计算截面处的计算宽度,Bc=4500.00mm; ho承台计算截面处的计算高度,ho=1200.00-25.00=1175.00mm; 计算截面的剪跨比,=a
22、/ho,此处,a=(4500.00/2-1650.00/2)-(4500.00/2-3000.00/2)=675.00mm, 当 3时,取=3;此处得=0.574; 剪切系数,当0.31.4时,=0.12/(+0.3);当1.43.0时,=0.2/(+1.5), 得=0.137 ; fc混凝土轴心抗压强度设计值,fc=19.10N/mm2;则, 1.00(1429.63-32.53)=1397.10kN0.13719.104500.001175.00/1000=13835.80kN;经过计算承台已满足抗剪要求,只需构造配箍筋!4.2.4单肢格构柱截面验算(下述验算荷载取数均大于设计值)1、格构
23、柱力学参数L140x14A =37.57cm2 i =4.28cm I =688.81cm4 z0 =3.98cm每个格构柱由4根角钢L140x14组成,格构柱力学参数如下:Ix1=I+A(b1/2z0)2 4=688.81+37.57(47.00/2-3.98)24=60016.49cm4;An1=A4=37.574=150.28cm2;W1=Ix1/(b1/2-z0)=60016.49/(47.00/2-3.98)=3074.62cm3;ix1=(Ix1/An1)0.5=(60016.49/150.28)0.5=19.98cm;2、格构柱平面内整体强度Nmax/An1=1429.63103
24、/(150.28102)=95.13N/mm2f=300N/mm2;格构柱平面内整体强度满足要求 。3、格构柱整体稳定性验算L0x1=lo=10.60m;x1=L0x1102/ix1=10.60102/19.98=53.04;单肢缀板节间长度:a1=0.80m;1=L1/iv=80.00/2.75=29.09;0x1=(x12+12)0.5=(53.042+29.092)0.5=60.50;查表:x=0.80;Nmax/(xA)=1429.63103/(0.80150.28102)=123.98N/mm2f=300N/mm2;格构柱整体稳定性满足要求。4、刚度验算max=0x1=60.50=1
25、50 满足;单肢计算长度:l01=a1=80.00cm;单肢回转半径:i1=4.28cm;单肢长细比:1=l01/i1=80.00/4.28=18.690.7max=0.760.50=42.35;因截面无削弱,不必验算截面强度。分肢稳定满足要求。4.2.5整体格构柱基础验算(下述验算荷载取数均大于设计值)1、格构柱基础力学参数单肢格构柱力学参数:Ix1=60016.49cm4 An1=150.28cm2W1=3074.62cm3 ix1=19.98cm格构柱基础是由四个单肢的格构柱组成的,整个基础的力学参数:Ix2=Ix1+An1(b2102/2-b1102/2)24=60016.49+150
26、.28(2.20102/2-0.47102/2)24=4737796.07cm4;An2=An14=150.284=601.12cm2;W2=Ix2/(b2/2-b1/2)=4737796.07/(2.20102/2-0.47102/2)=54772.21cm3;ix2=(Ix2/An2)0.5=(4737796.07/601.12)0.5=88.78cm;2、格构柱基础平面内整体强度N/An+Mx/(xW)=2050.60103/(601.12102)+1429.63106/(1.054772.21103)=83.61N/mm2f=300N/mm2;格构式基础平面内稳定满足要求。3、格构柱基
27、础整体稳定性验算L0x2=lo=10.60m;x2=L0x2/ix2=10.60102/88.78=11.94;An2=601.12cm2;Ady2=210.67=21.34cm2;0x2=(x22+40An2/Ady2)0.5=(11.942+40601.12/21.34)0.5=35.63;查表:x=0.92; NEX = 2EAn2/1.10x22NEX=87532.35N; N/(xA) + mxMx/(Wlx(1-xN/NEX) fN/(xA)+mxMx/(Wlx(1-xN/NEX)=27.00N/mm2f=300N/mm2;格构式基础整体稳定性满足要求。4、刚度验算max=0x2=
28、35.63=150 满足;单肢计算长度:l02=a2=200.00cm;单肢回转半径:ix1=19.98cm;单肢长细比:1=l02/ix1=200.00/19.98=10.010.7max=0.735.63=24.94;因截面无削弱,不必验算截面强度。刚度满足要求。4.2.6桩承载力验算桩承载力计算依据建筑桩技术规范(JGJ94-2008)的第4.1.1条。根据以上的计算方案可以得到桩的轴向压力设计值,取其中最大值; N=987.58kN;桩顶轴向压力设计值应满足下面的公式: 0NfcA其中,o建筑桩基重要性系数,o=1.00; fc混凝土轴心抗压强度设计值,fc=14.30N/mm2; A
29、桩的截面面积,A=d2/4=0.50 m2;则,1.00987.58=987.58kN987.58kN,桩的竖向极限承载力满足要求!4.2.8桩基础抗拔验算 桩抗拔承载力计算依据建筑桩基础技术规范(JGJ94-2008)的第5.4.5条1.单桩抗拔承载力设计值按下式计算 R=Uk/2+Gp 式中 Uk群桩呈非整体破坏时基桩的抗拔极限承载力标准值: Gp基桩自重,地下水位以下取浮重度 Ui破坏表面周长,等直径桩,所以取2.51m i抗拔系数 Uk=0.620.002.514.00+0.620.002.517.45 +0.635.002.518.00+0.655.002.512.55 =977.7
30、7kN Gp=2.5122.0015.00=829.38kN R=977.77/2.00+829.38=1318.27kN2.考虑群桩呈整体破坏,桩群抗拔承载力设计值按下式计算 R=Ugk/2+Ggp 式中 Ugk群桩呈整体破坏时桩基的抗拔极限承载力标准值 Ggp群桩基础所包围体积的桩土总自重设计值除以总桩数,地下水位以下取浮重度 Ul桩群外围周长 Ugk=10.48(0.620.004.00+0.620.007.45 +0.635.008.001.0055.002.55)/4 =1020.62kN Ggp=10.4822.0018.00=4150.08kN R=1020.62/2.00+41
31、50.08=4660.39kN 3.抗拔承载力设计值: 取上面两式中的较小者:R=1318.27kNR=1318.27kN 1.0210.40kN桩抗拔满足要求。4.2.9桩配筋计算1、桩构造配筋计算按照构造要求配筋。As=d2/40.65%=3.148002/40.65%=3267mm22、桩抗压钢筋计算经过计算得到桩顶轴向压力设计值满足要求,只需构造配筋!3、桩受拉钢筋计算经过计算得到桩抗拔满足要求,只需构造配筋!建议配筋值:HRB335钢筋,11根20二级钢。实际配筋值3456.2 mm2。依据建筑桩基设计规范(JGJ94-2008),箍筋采用68200-300mm,宜采用螺旋式箍筋;受
32、水平荷载较大的桩基和抗震桩基,桩顶3-5d范围内箍筋应适当加密;当钢筋笼长度超过4m时,应每隔2m左右设一道12-18焊接加劲箍筋。4.3工作状态下荷载计算4.3.1塔吊受力计算1、塔吊竖向力计算承台自重:Gc=25BcBch1.2=253.504.501.201.2=567.00kN格构柱系统自重:Gz=4271.2=129.60 kN作用在基础桩上的垂直力:N=1.2(Gt+Gc+Gz)=1.2(1015.40+567.00+129.60+80)=2146.60kN(全高)N=1.2(Gt+Gc+Gz)=1.2(506.0+567.00+129.60+80)=1529.12kN(初升40m
33、,上拔力验算用)N=1.2(Gt+Gc+Gz)=1.2(691.4+567.00+129.60)=1761.60kN(初升40m,压力验算用)2、塔吊风荷载计算地处 上海,允许风压0=0.25 kN/m2挡风系数计算: = (3B+2b+(4B2+b2)1/2c/Bb)挡风系数=0.87体型系数s=1.14查表得:荷载高度变化系数z=0.73高度z处的风振系数取:z=1.0所以风荷载设计值为:=0.7zsz0=0.71.001.140.730.25=0.15kN/m23、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M=BHH0.5=0.150.871.6040.0040.000.5=161.4
34、9kNm总的最大弯矩值:Mmax=1.4(Me+M+Ph)=1.4(892.00+161.49+30.001.20)=1089.49kNm(承台顶)桩顶面处最大弯矩值:Mmax=1.4(Me+M+Ph)=1.4(892.00+161.49+30.001.20+52.6311.8)=1958.94kNm4、塔吊水平力计算水平力:V=1.2(BH+P)=1.2(0.251.6040.000.87+30.00)=52.63kN5、每根格构柱的受力计算 作用于格构柱顶面的重力作用:N=1.2(Gt+Gc)=1.2(1015.40+567.00)=1898.88kN。 Mmax=1089.49kNm V
35、=52.63kN作用在基础桩上的垂直力:N=2146.60kN(全高)N=1529.12kN(初升40m,上拔力验算用)N=1761.60kN(初升40m,压力验算用)作用在桩面弯矩Mmax=1958.94 kNm图中x轴的方向是随时变化的,计算时应按照倾覆力矩Mmax最不利方向进行验算。(1)、桩顶竖向力的计算(取下述工况中的大者)全高140m时的工况(加设扶墙件,弯矩及水平力可忽略):Ni=(F+G)/4=2146.60/4=536.65 kN初升40m,竖向压力验算Ni=(F+G)/4Mxyi/yi2Myxi/xi2;式中:N单桩个数,n=4; F作用于桩基承台顶面的竖向力设计值; G桩
36、基承台加上格构柱的自重; Mx,My承台底面的弯矩设计值; xi,yi单桩相对承台中心轴的XY方向距离; Ni单桩桩顶竖向力设计值;设短边方向为x方向,长边方向为y方向。确定最不利弯矩方向:设与x方向夹角为,则单桩受力N=Msin/(22.2)+Mcos/(23);N对求导,则得出N=Mcos/(22.2)- Msin/(23),当N=0时可以得出其极值,则可得tg=3/2.2时出现最不利工况。即sin=0.8065,cos=0.5914.则有:Mx= Mmaxcos=1958.940.5914=1158.52 kNm ,My= Mmaxsin=1958.940.8065=1579.89kNm
37、经计算得到单桩桩顶竖向力设计值最大压力:Nmax=1761.60/4+(1158.523)/(232)+ (1579.892.2)/(22.22)=992.55kN最小压力:Nmin=1529.12/4-(1158.523)/(232)- (1579.892.2)/(22.22)=-169.87kN需要验算桩基础抗拔力。桩顶剪力的计算V0=V/4=52.63/4=13.16kN(2)、格构柱顶竖向力的计算(取下述工况中的大者)格构柱受力明显小于桩顶,按照桩顶受力数据进行计算。4.3.2塔吊与承台连接的螺栓验算按照塔吊说明书布置,不再验算。4.3.3承台验算(下述验算荷载取数均大于设计值)1、承
38、台弯矩的计算依据建筑桩技术规范(JGJ94-2008 )的第5.9.1条。 Mx1 = Niyi My1 = Nixi其中 Mx1,My1计算截面处XY方向的弯矩设计值; xi,yi单桩相对承台中心轴的XY方向距离取(a-B)/2=(3.00-1.60)/2=0.700m; Ni1单桩桩顶竖向力设计值;经过计算得到弯矩设计值:(Mx1,My1)max=20.700879.20=1230.88kNm。2、螺栓粘结力锚固强度计算锚固深度计算公式: h N/dfb其中 N锚固力,即作用于螺栓的轴向拉力,N=52.95kN; d楼板螺栓的直径,d=20mm; fb楼板螺栓与混凝土的容许粘接强度,计算中取1.71N/mm2; h楼板螺栓在混凝土楼板内的锚固深度,经过计算得到 h 要大于52.95103/(3.1420.001.71)=493.07mm构