1、 小学数学简便运算方法归类 一、 带符号搬家法(根据:加法互换律和乘法互换率) 当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符号搬家”。(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;abc=acb,abc=acb,abc=acb,abc=acb) 二、结合律法 (一)加括号法 1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算本来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,本来是加,现在就要变为减;本来是减,现在就要变为加。(即在加减运算中添括号时
2、,括号前是加号,括号里不变号,括号前是减号,括号里要变号。) a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a(b-c), a-b-c= a-( b +c); 2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,本来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,本来是乘,现在就要变为除;本来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。) abc=a(bc), abc=a(bc), abc=a(bc), abc=a(bc) (二)去括号法 1.当一个计
3、算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,本来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,本来括号里的加,现在要变为减;本来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c 2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,本来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,本来括号里的乘,现在就要变为除;本来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家
4、了哈) (注:去掉括号是添加括号的逆运算)a(bc) = abc, a(bc) = abc, a(bc) = abc , a(bc) = abc三、乘法分派律法 1.分派法 括号里是加或减运算,与另一个数相乘,注意分派 24(-) 2.提取公因式 注意相同因数的提取。 0.921.410.928.59 - 3.注意构造,让算式满足乘法分派律的条件。 103-2- 2.69.9 四、借来还去法看到名字,就知道这个方法的含义。用此方法时,需要注意观测,发现规律。还要注意还哦 ,有借有还,再借不难嘛。 9999+999+99+9 4821-998 1. 拆分法 顾名思义,拆分法就是为了方便计算把一个
5、数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 3.212.525 1.2588 3.60.25 2. 巧变除为乘 也就是说,把除法变成乘法,例如:除以可以变成乘4。 7.60.25 3.50.125 七、 裂项法 分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。碰到裂项的计算题时,要仔细的观测每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,
6、这样的话,找到相邻两项的相似部分,让它们消去才是最主线的。 分数裂项的三大关键特性: (1)分子所有相同,最简朴形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 分数裂项的最基本的公式 这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。有余力的孩子可以学一下。 简便运算(一)专题简析:根据算式的结构和数的特性,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。例题1。计
7、算4.75-9.63+(8.25-1.37) 原式4.75+8.259.631.37 13(9.63+1.37) 1311 2练习1计算下面各题。1 6.73-2 +(3.271 ) 2. 7(3.8+1 )13. 14.15(76)2.125 4. 13(4+3)0.75例题2。计算33338779+79066661 原式333387.579+79066661.25 (33338.75+66661.25)790 100000790 79000000练习2计算下面各题:1. 3.51+125+1 2. 9750.25+9769.753. 9425+4.25 4. 0.99990.7+0.111
8、12.7例题3。计算:361.09+1.267.3原式1.2301.09+1.267.3 1.2(32.7+67.3) 1.2100 120疯狂操练 3计算:1. 452.08+1.537.6 2. 5211.1+2.67783. 481.08+1.256.8 4. 722.091.873.6例题4。计算:325+37.96 原式325+(25.4+12.5)6.4 325+25.46.4+12.56.4 (3.6+6.4)25.4+12.580.8 254+80 334练习4计算下面各题:1. 6.816.8+19.33.22. 139+1373. 4.457.8+45.35.6例题5。计算
9、81.515.8+81.551.8+67.618.5 原式81.5(15.8+51.8)+67.618.5 81.567.6+67.618.5 (81.5+18.5)67.6 10067.6 6760练习53. 53.535.3+53.543.2+78.546.54. 23512.1+23542.213554.35. 3.757355730+16.262.5答案:练一: 1、6 2、1 3、11 4、5练二: 1、7.5 2、975 3、4250 4、0.9999练三: 1、150 2、2600 3、120 4、18 练四: 1、176 2、138 3、508练五: 1、7850 2、=543
10、0 3、=1620简便运算(二)专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,发明条件运用乘法分派律来简算,这种思考方法在四则运算中用处很大。例题1。计算:1234+2341+3412+4123简析注意到题中共有个四位数,每个四位数中都包具有、这几个数字,并且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答: 原式11111+21111+31111+41111 (1+2+3+4)1111 101111 11110练习11. 23456+34562+45623+56234+623452. 45678+56784+67845+78456+84
11、5673. 124.68+324.68+524.68+724.68+924.68例题2。计算:223.4+11.157.6+6.5428 原式2.823.4+2.865.4+11.187.2 2.8(23.4+65.4)+88.8 7.2 2.888.8+88.87.2 88.8(2.8+7.2) 88.810 888练习2计算下面各题:1. 9999977778+33333666662. 34.576.53456.421231.453. 7713+255999+510例题3。计算 原式 1练习3计算下面各题:1. 2. 3. 例题4。有一串数1,4,9,16,25,36.它们是按一定的规律排
12、列的,那么其中第2023个数与2023个数相差多少? 20232202322023202320232+2023 2023(20232023)+2023 2023+2023 4001练习4计算:1. 1991219902 2. 99992+19999 3. 999274+6274例题5。计算:(9+7)(+) 原式(+)(+) 【65(+)】【5(+)】 655 13练习5计算下面各题:1. (+1+)(+)2. (3+1)(1+)3. (96+36)(32+12)答案:练一: 1、222220 2、333330 3、2623.4练二: 1、 2、246 3、256256练三: 1、1 2、1
13、3、练四: 1、3981 2、 3、280000练五: 1、2 2、2.5 3、3简便运算(四)专题简析:前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍如何用拆分法(也叫裂项法、拆项法)进行分数的简便运算。运用拆分法解题重要是使拆开后的一些分数互相抵消,达成简化运算的目的。一般地,形如的分数可以拆成;形如的分数可以拆成(),形如的分数可以拆成+等等。同学们可以结合例题思考其中的规律。例题1。计算:+.+ 原式(1)+()+()+.+ () 1+.+ 1 练习1计算下面各题:1. +.+ 2. + +3. + +4. 1+例题2。计算:+.+ 原式(+.+
14、) 【()+()+().+ ()】 【】 练习2计算下面各题:1. +.+ 2. +.+ 3. +.+ 4. +例题3。计算:1+ 原式1(+)+(+)(+)+(+)(+) 1+ 1 练习3计算下面各题:1. 1+2. 1+3. + +4. 66+ 6例题4。计算:+ 原式(+) 1 练习4计算下面各题:1. +2. +3. 9.6+99.6+999.6+9999.6+99999.6例题5。计算:(1+)(+)(1+)(+) 设1+a +b 原式a(b+)(a+)b ab+aabb (ab) 练习51. (+)(+)(+)(+)2. (+)(+)(+)(+)3. (1+)(+)(1+)(+)答
15、案:练1 1、 2、 3、 4、 练2 1、 2、 3、 4、 练3 1、 1 2、 1 3、 1665 4、 3练4 1、 2、 3、 111108练5 1、 2、 3、 小学生小升初数学常见简便计算总结要想提高计算能力,一方面要学好各种运算的法则、运算定律及性质,这是计算的基础。另一方面是要多做练习。这里说的“多”是高质量的“多”,不单是数量上的“多”。多做题,多见题才干见多识广、熟能生巧,坚持不懈就能提高计算能力。再次是养成速算、巧算的习惯。能速算、巧算是一个学生能综合运用计算知识、计算能力强的突出表现。比如计算85545。你见到这个题就应当想到:90045=20,而 855比 900少
16、45,那么85545的商应比90045的商小1,应是19。要想提高计算能力,还要掌握一些简算、巧算的方法,这要有老师的指导。看看下面的例题,是一定会得到启发的。分析与解在进行四则运算时,应当注意运用加法、乘法的运算定律,减法、除法的运算性质,以便使某些运算简便。本题就是运用乘法分派律及减法性质使运算简便的。例2 计算 99992222+33333334分析与解 运用乘法的结合律和分派律可以使运算简便。99992222+33333334=3333(32222)+33333334=33336666+333333343333(6666+3334)=333310000=33330000分析与解 将分子
17、部分变形,再运用除法性质可以使运算简便。分析与解 在计算时,运用除法性质可以使运算简便。分析与解 这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应当先将各分数的分子、分母分别分解质因数,这样计算比较简便。分析与解 通过观测发现,原算式是求七个分数相加的和,而这七个分由此得出原算式 分析与解观测题中给出的数据特点,应当将小括号去掉,然后适当分组,这样可使运算简便。分析与解 观测这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行拆项,简算。分析与解 我们知道例12 计算 12+23+341011分析与解将这10个等式左、右两边分别相加,可以得到例13
18、 计算13+24+35+46+5052分析与解 我们知道13=13-1+1=1(3-1)+1=12+124=24-2+2=2(4-1)+2=23+235=35-3+3=3(5-1)+3=34+346=46-4+4=4(6-1)+4=45+45052=5052-50+50=50(52-1)+50=5051+50将上面各式左、右两边分别相加,可以得到13+24+35+46+5052=12+1+23+2+34+3+45+4+5051+50=12+23+34+45+5051+1+2+3+4+50=44200+1275=45475例14 计算(1+0.23+0.34) (0.23+0.34+0.56)-
19、(1+0.23+0.34+0.56)(0.23+0.34)分析与解 根据题中给出的数据,设10.23+0.34=a,0.23+0.34=b,那么 a-b=1+0.23+0.34-0.23-0.34=1。于是原式变为a(b+0.56)-(a+0.56)b=ab+0.56a-ab-0.56b0.56a-0.56b=0.56(a-b)=0.561=0.56例15 算式2357111317最后得到的乘积中,所有数位上的数字和是多少?分析与解 规定算式乘积的各个数位上的数字和是多少,就要先求出乘积来。求积时应用乘法结合律可使计算简便。2357111317=(25)(71113)(317)=1010015
20、1=1001051=510510因此,乘积的所有数位上的数字和是5+1+0+5+1+0=12答:乘积的所有数位上的数字和是12。分析与解 根据已知,要是算出两个数的乘积再求出积的各个数位的数字和,那就太复杂了。不妨先从简朴的算起,寻找解题的规律。例如,99=81,积的数字和是8+1=9;9999=9801,积的数字和是 9+8+1=18;999999 =998001,积的数字和是9+9+8+1=27;99999999=99980001,积的数字和是9+9+9+8+1=36;从计算的结果可以看出,一个因数中9的个数决定了积的各个数位的数字之和是几。99的每个因数中有1个9,那么积的各个数位的数字
21、和就是1个9;9999的每个因数中有 2个9,那么积的各个数位的数字和就是2个9,即等于18;999999的每个因数中有 3个 9,那么积的各个数位的数字和就是3个9,即等于27;个9,即等于91993=17937。分析与解 比较几个分数的大小时通常采用的方法是先将几个分数通分,再比较它们的大小;或者将几个分数先化成小数,再比较它们的 大小。观测题中给出的五个数,不难发现,采用前面提到的这两种方法都不容易。但是在观测这几个分数时我们也不难发现,这几个分数的分子都比较小,并能看出 3、2、15、10、12的最小公倍数是60,那么就应当把这几个分数都化成分子相同的分数,去比较它们的大小。我们知道,
22、分子相同的分数,分母大的反而 小,分母小的反而大。还是比B小?例19 11994这些自然数中所有数字的和是多少?分析与解 规定11994这些自然数中所有数字的和,可以先求出01999这些数中所有数字的和,然后再减去19951999这五个数的数字和。将01999这2023个数分组,每两个数为一组,可以提成1000组:(0,1999),(1,1998),(2,1997),(3,1996),(4,1995),(996,1003),(997,1002),(998,1001),(999,1000)。这里每组的两数的和都是1999,并且每组中两个数相加时都不进位,这样,11999这些自然数所有数字和是:(
23、1+9+9+9)1000=281000= 28000而 19951999这五个数的数字和是:(1+9+9)5+(5+6+7+8+9)=95+35=130因此11994这些自然数中所有数字的和是:28000-130=27870答:11994这些自然数中所有数字的和是27870。分析与解 要是先计算出对的的结果,再回答题中所问的这个繁分数化简后整数部分是多少,那可不是简朴的计算。这个繁分数的分子是1,那么这个繁分数化简后的结果,不就是这个繁分数分母部分各个分数之和的倒数吗?因此,只要看看分母部分是多少就可以了。个分数相加。然这个繁分数化简后的结果就是1了。繁分数化简后的整数部分就是1了。小学数学趣
24、题巧算百题百讲百练-计算部分练习数学网为广大小学生和家长整理的“小学数学趣题巧算百题百讲百练系列”,涉及计算、几何、应用题、杂题以及各部分练习题,每部分都有100道精选例题及讲解,以提高广大小学生的综合解题能力。本篇为计算部分练习。 15.12+23+34+9910016.56+67+78+192017.13+24+35+485018.2022+2123+2224+9810019.(2+0.38+0.49)(0.38+0.49+0.5)-(2+ 0.38+0.49+0.5)(0.38+0.49)20.(0.123+0.234+0.345)(0.234+0.345+0.456)-(0.123+0.234+0.345+0.456)(0.234+0.345)