1、湖北省恩施州2017年中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.17的绝对值是()A7B7CD答案:B2大美山水“硒都恩施”是一张亮丽的名片,八方游客慕名而来,今年“五一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为()A0.145106B14.5105C1.45105D1.45106答案:D3下列计算正确的是()Aa(a1)=a2aB(a4)3=a7Ca4+a3=a7D2a5a3=a2答案:A4下列图标是轴对称图形的是()ABCD答案:C5小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈
2、妈相邻的概率是()ABCD答案:D6如图,若A+ABC=180,则下列结论正确的是()A1=2B2=3C1=3D2=4答案:D7函数y=+的自变量x的取值范围是()Ax1Bx1且x3Cx3D1x3答案:B8关于x的不等式组无解,那么m的取值范围为()Am1Bm1C1m0D1m0答案:A9中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”将其围成一个正方体后,则与“牛”相对的是()A羊B马C鸡D狗答案:C10某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A5B6C7D8答
3、案:B11如图,在ABC中,DEBC,ADE=EFC,AD:BD=5:3,CF=6,则DE的长为()A6B8C10D12答案:C12如图,在平面直角坐标系中2条直线为l1:y=3x+3,l2:y=3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:ab+c=0;2a+b+c=5;抛物线关于直线x=1对称;抛物线过点(b,c);S四边形ABCD=5,其中正确的个数有()A5B4C3D2答案:C二、填空题(每题3分,满分12分,将答案填在答题纸上)1316的平方根是答案:
4、414分解因式:3ax26axy+3ay2= 答案:3a(xy)215如图,在RtABC中,BAC=30,以直角边AB为直径作半圆交AC于点D,以AD为边作等边ADE,延长ED交BC于点F,BC=2,则图中阴影部分的面积为 (结果不取近似值)答案:316如图,在66的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则ac=答案:2三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17先化简,再求值:,其中x=答案:18如图,ABC、CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P求证:AOB=60解:ABC和ECD都是等边三角形
5、,AC=BC,CD=CE,ACB=DCE=60,ACB+ACE=DCE+ACE,即ACD=BCE,在ACD和BCE中,ACDBCE(SAS),CAD=CBE,APO=BPC,AOP=BCP=60,即AOB=6019某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=,b=;(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;(3)全校有多少名学生选择
6、参加乒乓球运动?解:(1)抽取的人数是3630%=120(人),则a=12020%=24,b=12030243612=48故答案是:24,48;(2)“排球”所在的扇形的圆心角为360=72,故答案是:72;(3)全校总人数是12010%=1200(人),则选择参加乒乓球运动的人数是120030%=360(人)20如图,小明家在学校O的北偏东60方向,距离学校80米的A处,小华家在学校O的南偏东45方向的B处,小华家在小明家的正南方向,求小华家到学校的距离(结果精确到1米,参考数据:1.41,1.73,2.45)解:由题意可知:作OCAB于C,ACO=BCO=90,AOC=30,BOC=45在
7、RtACO中,ACO=90,AOC=30,AC=AO=40m,OC=AC=40m在RtBOC中,BCO=90,BOC=45,BC=OC=40mOB=40402.4582(米)答:小华家到学校的距离大约为82米21如图,AOB=90,反比例函数y=(x0)的图象过点A(1,a),反比例函数y=(k0,x0)的图象过点B,且ABx轴(1)求a和k的值;(2)过点B作MNOA,交x轴于点M,交y轴于点N,交双曲线y=于另一点,求OBC的面积解:(1)反比例函数y=(x0)的图象过点A(1,a),a=2,A(1,2),过A作AEx轴于E,BFx轴于F,AE=2,OE=1,ABx轴,BF=2,AOB=9
8、0,EAO+AOE=AOE+BOF=90,EAO=BOF,AEOOFB,OF=4,B(4,2),k=42=8;(2)直线OA过A(1,2),直线AO的解析式为y=2x,MNOA,设直线MN的解析式为y=2x+b,2=24+b,b=10,直线MN的解析式为y=2x+10,直线MN交x轴于点M,交y轴于点N,M(5,0),N(0,10),解得,或,C(1,8),OBC的面积=SOMNSOCNSOBM=51010152=1522为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元
9、(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9m12,m为整数,m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,W随m的增大而增大,当m=9时,W取得最
10、小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元23如图,AB、CD是O的直径,BE是O的弦,且BECD,过点C的切线与EB的延长线交于点P,连接BC(1)求证:BC平分ABP;(2)求证:PC2=PBPE;(3)若BEBP=PC=4,求O的半径解:(1)BECD,1=3,又OB=OC,2=3,1=2,即BC平分ABP;(2)如图,连接EC、AC,PC是O的切线,PCD=90,又BEDC,P=90,1+4=90,AB为O直径,A+2=90,又A=5,5+2=90,1=2,5=4,P=P,PBCPCE,PC2=PB
11、PE;(3)BEBP=PC=4,BE=4+BP,PC2=PBPE=PB(PB+BE),42=PB(PB+4+PB),即PB2+2PB8=0,解得:PB=2,则BE=4+PB=6,PE=PB+BE=8,作EFCD于点F,P=PCF=90,四边形PCFE为矩形,PC=FE=4,FC=PE=8,EFD=P=90,BECD,DE=BC,在RtDEF和RtBCP中,RtDEFRtBCP(HL),DF=BP=2,则CD=DF+CF=10,O的半径为524如图,已知抛物线y=ax2+c过点(2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的
12、垂线,垂足为C(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得QBF的面积最大?若存在,求出点Q的坐标及QBF的最大面积;若不存在,请说明理由解:(1)把点(2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC理由如下:设B(x, x2+1),而F(0,2),BF2=x2+(x2+12)2=x2+(x21)2=(x2+1)2,BF=x2+1,B
13、Cx轴,BC=x2+1,BF=BC;(3)如图1,m为自然数,则点P在F点上方,以B、C、F、P为顶点的四边形是菱形,CB=CF=PF,而CB=FB,BC=CF=BF,BCF为等边三角形,BCF=60,OCF=30,在RtOCF中,CF=2OF=4,PF=CF=4,P(0,6),即自然数m的值为6;(4)作QEy轴交AB于E,如图2,当k=1时,一次函数解析式为y=x+2,解方程组得或,则B(1+,3+),设Q(t, t2+1),则E(t,t+2),EQ=t+2(t2+1)=t2+t+1,SQBF=SEQF+SEQB=(1+)EQ=(1+)(t2+t+1)=(t2)2+1,当t=2时,SQBF有最大值,最大值为+1,此时Q点坐标为(2,2)