资源描述
第二周周清 余弦定理及应用举例
核心知识
1. 余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以变形为:cos A=,cos B=,cos C=.
2.用正弦定理和余弦定理解三角形的常见题型
测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.
3.实际问题中的常用角
(1)仰角和俯角
在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).
(2)方位角
指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).
(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.
(4)坡度:坡面与水平面所成的二面角的度数.
自我检测
1. 在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=.
若△ABC的面积等于,求a,b;
解:由余弦定理及已知条件,得a2+b2-ab=4.又因为△ABC的面积等于,所以absin C=,得ab=4,联立方程组解得
2. 在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.
解 在△ADC中,AD=10,
AC=14,DC=6,
由余弦定理得cos∠ADC=
==-,∴∠ADC=120°,∴∠ADB=60°.
在△ABD中,AD=10,∠B=45°,∠ADB=60°,
由正弦定理得=,
∴AB====5.
3.设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为多少?
解析 由正弦定理得=,又B=30°,
∴AB===50(m).
展开阅读全文