1、2010年高考数学试题分类汇编函数(2010上海文数)22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。若实数、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)对任意两个不相等的正数、,证明:比接近;(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).解析:(1) x(-2,2);(2) 对任意两个不相等的正数a、b,有,因为,所以,即a2b+ab2比a3+b3接近;(3) ,kZ,f(x)是偶函数,f(x)是周期函数,最小正周期T=p,函数f(x)的最小
2、值为0,函数f(x)在区间单调递增,在区间单调递减,kZ(2010湖南文数)21(本小题满分13分)已知函数其中a0,且a-1.()讨论函数的单调性;()设函数(e是自然数的底数)。是否存在a,使在a,-a上为减函数?若存在,求a的取值范围;若不存在,请说明理由。(2010浙江理数) (22)(本题满分14分)已知是给定的实常数,设函数,是的一个极大值点 ()求的取值范围;()设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证
3、能力、分类讨论等综合解题能力和创新意识。()解:f(x)=ex(x-a) 令于是,假设(1) 当x1=a 或x2=a时,则x=a不是f(x)的极值点,此时不合题意。(2) 当x1a且x2a时,由于x=a是f(x)的极大值点,故x1a0),由已知得 =alnx,=, 解德a=,x=e2,两条曲线交点的坐标为(e2,e) 切线的斜率为k=f(e2)= ,切线的方程为y-e=(x- e2). (2)由条件知 当a.0时,令h (x)=0,解得x=,所以当0 x 时 h (x)时,h (x)0,h(x)在(0,)上递增。所以x是h(x)在(0, + )上的唯一极致点,且是极小值点,从而也是h(x)的最
4、小值点。所以(a)=h()= 2a-aln=2当a0时,h(x)=(1/2-2a) /2x0,h(x)在(0,+)递增,无最小值。故 h(x) 的最小值(a)的解析式为2a(1-ln2a) (ao)(3)由(2)知(a)=2a(1-ln2a) 则 1(a )=-2ln2a,令1(a )=0 解得 a =1/2当 0a0,所以(a ) 在(0,1/2) 上递增当 a1/2 时, 1(a )0,为单调递增区间。最大值在右端点取到。(2010安徽文数)20.(本小题满分12分)设函数,求函数的单调区间与极值。【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解
5、决问题的能力.【解题指导】(1)对函数求导,对导函数用辅助角公式变形,利用导数等于0得极值点,通过列表的方法考查极值点的两侧导数的正负,判断区间的单调性,求极值.【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点.(2010重庆文数)(19) (本小题满分12分), ()小问5分,()小问7分.)已知函数(其中常数a,bR),是奇函数.()求的表达式;()讨论的单调性,并求在区间1,2上的最大值和最小值.(2010浙江文数)(21)(本题满分15分)已知函数(a-b)0. ()若a=1,
6、求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)0恒成立,求a的取值范围.【解析】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.满分12分.()解:当a=1时,f(x)=,f(2)=3;f(x)=, f(2)=6.所以曲线y=f(x)在点(2,f(2)处的切线方程为y-3=6(x-2),即y=6x-9.()解:f(x)=.令f(x)=0,解得x=0或x=.以下分两种情况讨论:(1) 若,当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-f(x)极大值 当等价于 解不等式组得-5a2,
7、则.当x变化时,f(x),f(x)的变化情况如下表:X0f(x)+0-0+f(x)极大值极小值当时,f(x)0等价于即解不等式组得或.因此2a5. 综合(1)和(2),可知a的取值范围为0a1时,2x-20,从而(x)0,从而函数F(x)在1,+)是增函数。又F(1)=F(x)F(1)=0,即f(x)g(x).)证明:(1)若(2)若根据(1)(2)得由()可知,,则=,所以,从而.因为,所以,又由()可知函数f(x)在区间(-,1)内事增函数,所以,即2.(2010福建文数)22(本小题满分14分) 已知函数f(x)=的图像在点P(0,f(0))处的切线方程为y=3x-2()求实数a,b的值
8、;()设g(x)=f(x)+是上的增函数。 (i)求实数m的最大值; (ii)当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由。(2010福建文数)21(本小题满分12分)某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西30且与该港口相距20海里的处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。 ()若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?()为保证
9、小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;()是否存在,使得小艇以海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定的取值范围;若不存在,请说明理由。(2010全国卷1理数)(20)(本小题满分12分) 已知函数.()若,求的取值范围;()证明: .(2010四川文数)(22)(本小题满分14分)设(且),g(x)是f(x)的反函数.()求;()当时,恒有成立,求t的取值范围;()当0a时,试比较f(1)+f(2)+f(n)与的大小,并说明理由.(2010湖北文数)21.(本小题满分14分)设函数,其中a0,曲线在点P(0,)处的切线方程
10、为y=1()确定b、c的值()设曲线在点()及()处的切线都过点(0,2)证明:当时,()若过点(0,2)可作曲线的三条不同切线,求a的取值范围。(2010湖北文数)19.(本小题满分12分)已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房。()分别写出第一年末和第二年末的实际住房面积的表达式:()如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)(2010山东理数)(22)(本小题满分14
11、分)已知函数.()当时,讨论的单调性;()设当时,若对任意,存在,使,求实数取值范围.()当时,在(0,1)上是减函数,在(1,2)上是增函数,所以对任意,有,又已知存在,使,所以,即存在,使,即,即,所以,解得,即实数取值范围是。【命题意图】本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力。(1)直接利用函数与导数的关系讨论函数的单调性;(2)利用导数求出的最小值、利用二次函数知识或分离常数法求出在闭区间1,2上的最
12、大值,然后解不等式求参数。(2010湖南理数)20.(本小题满分13分)已知函数对任意的,恒有。()证明:当时,;()若对满足题设条件的任意b,c,不等式恒成立,求M的最小值。解析:(2010湖北理数)17(本小题满分12分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。()求k的值及f(x)的表达式。()隔热层修
13、建多厚时,总费用f(x)达到最小,并求最小值。(2010福建理数)20(本小题满分14分)()已知函数,。(i)求函数的单调区间; (ii)证明:若对于任意非零实数,曲线C与其在点处的切线交于另一点,曲线C与其在点处的切线交于另一点,线段()对于一般的三次函数()(ii)的正确命题,并予以证明。 【命题意图】本小题主要考查函数、导数、定积分等基础知识,考查抽象概括能力、运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想、特殊与一般思想。【解析】()(i)由得=,当和时,;当时,因此,的单调递增区间为和,单调递减区间为。(2010湖北理数)(2010安徽理数)17、(本
14、小题满分12分) 设为实数,函数。 ()求的单调区间与极值;()求证:当且时,。(2010江苏卷)20、(本小题满分16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。(1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质。给定设为实数,且,若|0,所以对任意的都有,在上递增。又。当时,且, 综合以上讨论,得:所求的取值范围是(0,1)。(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,从而在区间上单调递增。当时,有,得,同理可得,所以由的单调性知、,从而有|,符合题设。当时,于是由及的单调性知,所以|,与题设不符。当时,同理可得,进而得|,与题设不符。因此综合、得所求的的取值范围是(0,1)。