资源描述
机械原理课程设计说明书
题目: 铰链式颚式破碎机方案分析
目 录
一 设计题目……………………………………………………………………1
二 已知条件及设计要求…………………………………………………1
2.1已知条件……………………………………………………………………1
2.2设计要求……………………………………………………………………2
三. 机构的结构分析…………………………………………………………2
3.1六杆铰链式破碎机……………………………………………………… 2
3.2四杆铰链式破碎机……………………………………………………… 2
四. 机构的运动分析…………………………………………………………2
4.1六杆铰链式颚式破碎机的运动分析………………………………… 2
4.2四杆铰链式颚式破碎机的运动分析………………………………… 4
五.机构的动态静力分析……………………………………………………6
5.1六杆铰链式颚式破碎机的静力分析………………………………… 6
5.2四杆铰链式颚式破碎机的静力分析…………………………………12
六. 工艺阻力函数及飞轮的转动惯量函数 ……………………16
6.1工艺阻力函数程序 ……………………………………………………16
6.2飞轮的转动惯量函数程序…………………………………………… 17
七 .对两种机构的综合评价…………………………………………… 19
八 . 主要的收获和建议………………………………………………… 20
九 . 参考文献……………………………………………………………… 20
东北大学机械原理课程设计 铰链式颚式破碎机方案分析
一 设计题目
铰链式颚式破碎机方案分析
二 已知条件及设计要求
2.1已知条件
图(a)所示为六杆铰链式破碎机方案简图。主轴1的转速为n1 = 170r/min,各部尺寸为:lO1A = 0.1m, lAB = 1.250m, lO3B = 1m, lBC = 1.15m, lO5C = 1.96m, l1=1m, l2=0.94m, h1=0.85m, h2=1m。各构件质量和转动惯量分别为:m2 = 500kg, Js2 = 25.5kg·m2, m3 = 200kg, Js3 = 9kg·m2, m4 = 200kg, Js4 = 9kg·m2, m5=900kg, Js5=50kg·m2, 构件1的质心位于O1上,其他构件的质心均在各杆的中心处。D为矿石破碎阻力作用点,设LO5D = 0.6m,破碎阻力Q在颚板5的右极限位置到左极限位置间变化,如图(b)所示,Q力垂直于颚板。
图(c)是四杆铰链式颚式破碎机方案简图。主轴1 的转速n1=170r/min。lO1A = 0.04m, lAB = 1.11m, l1=0.95m, h1=2m, lO3B=1.96m,破碎阻力Q的变化规律与六杆铰链式破碎机相同,Q力垂直于颚板O3B,Q力作用点为D,且lO3D = 0.6m。各杆的质量、转动惯量为m2 = 200kg, Js2=9kg·m2,m3 = 900kg, Js3=50kg·m2。曲柄1的质心在O1 点处,2、3构件的质心在各构件的中心。
(a) 六杆铰链式破碎机 (b) 工艺阻力
(c) 四杆铰链式破碎机
2.2设计要求
试比较两个方案进行综合评价。主要比较以下几方面:
1. 进行运动分析,画出颚板的角位移、角速度、角加速度随曲柄转角的变化曲线。
2. 进行动态静力分析,比较颚板摆动中心运动副反力的大小及方向变化规律,曲柄上的平衡力矩大小及方向变化规律。
3. 飞轮转动惯量的大小。
三. 机构的结构分析
3.1六杆铰链式破碎机
3.2四杆铰链式破碎机
四. 机构的运动分析
4.1六杆铰链式颚式破碎机的运动分析
(1)调用bark函数求2点的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
1 2 0 1 0.1 0.0 0.0 t w e p vp ap
(2)调用rrrk函数求3点的运动参数
形参
m n1 n2 n3 k1 k2 r1 r2 t w e p vp ap
实参
-1 2 4 3 2 3 1.25 1 t w e p vp ap
(3)调用rrrk函数求5点的运动参数
形参
m n1 n2 n3 k1 k2 r1 r2 t w e p vp ap
实参
1 3 6 5 4 5 1.15 1.96 t w e p vp ap
(4)程序:对构件5的运动轨迹分析
#include"graphics.h"
#include "subk.c"
#include "draw.c"
main()
{
static double p[20][2],vp[20][2],ap[20][2],del;
static double t[10],w[10],e[10],tdraw[370],wdraw[370],edraw[370];
static int ic;double r12,r23,r34,r35,r56;double pi ,dr;double r2,vr2,ar2;int i;
FILE*fp;r12=0.1,r23=1.25,r34=1.0,r35=1.15,r56=1.96;w[1]=-17.8;del=15;
pi=4.0*atan(1.0);dr=pi/180.0;p[1][1]=0.0;p[1][2]=0.0;p[4][1]=0.94;
p[4][2]=-1.0;p[6][1]=-1.0;p[6][2]=0.85;
printf("\n The Kinematic Parameters of Point 5\n");
printf("No THETA1 t w e\n");
printf(" deg rad rad/s rad/s/s\n");
if((fp=fopen("file20133098.txt","w"))==NULL)
{printf("Can't open this file.\n");exit(0);}
fprintf(fp,"\n The kinematic parameters of point 10\n");
fprintf(fp,"No THETA1 t w e\n");
fprintf(fp," deg rad rad/s rad/s/s");ic=(int)(360.0/del);
for(i=0;i<=ic;i++)
{t[1]=(-i)*del*dr;
bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);
rrrk(-1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap);
rrrk(1,3,6,5,4,5,r35,r56,t,w,e,p,vp,ap);
printf("\n%2d %12.3f %12.3f %12.3f %12.3f",i+1,t[1]/dr,t[5],w[5],e[5]);
fprintf(fp,"\n%2d%12.3f%12.3f%12.3f%12.3f",i+1,t[1]/dr,t[5],w[5],e[5]);
tdraw[i]=t[5];wdraw[i]=w[5];edraw[i]=e[5];if((i%16)==0){getch();};}
fclose(fp);getch();draw1(del,tdraw,wdraw,edraw,ic);}
(5)数据:随主动件1变化的运动参数
The kinematic parameters of point 5
No THETA1 t5 w5 e5
deg rad rad/s rad/s/s
1 0.000 -1.658 0.346 3.955
2 -15.000 -1.653 0.392 2.002
3 -30.000 -1.647 0.400 -0.932
4 -45.000 -1.641 0.362 -4.354
5 -60.000 -1.637 0.274 -7.504
6 -75.000 -1.633 0.146 -9.610
7 -90.000 -1.632 -0.001 -10.181
8 -105.000 -1.633 -0.145 -9.162
9 -120.000 -1.637 -0.265 -6.902
10 -135.000 -1.641 -0.345 -3.980
11 -150.000 -1.646 -0.382 -1.008
12 -165.000 -1.652 -0.377 1.518
13 -180.000 -1.657 -0.341 3.296
14 -195.000 -1.662 -0.284 4.236
15 -210.000 -1.666 -0.220 4.435
16 -225.000 -1.668 -0.156 4.120
17 -240.000 -1.670 -0.10 3.583
18 -255.000 -1.671 -0.051 3.105
19 -270.000 -1.672 -0.007 2.897
20 -285.000 -1.672 0.036 3.063
21 -300.000 -1.671 0.085 3.570
22 -315.000 -1.669 0.142 4.246
23 -330.000 -1.667 0.209 4.790
24 -345.000 -1.663 0.281 4.816
25 -360.000 -1.658 0.346 3.955
(6)线图:构件5角位置,角速度,角加速度线图
六杆机构颚板角位置、角速度、角加速度随曲柄转角的变化曲线
4.2四杆铰链式颚式破碎机的运动分析
(1)调用bark函数求2点的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
1 2 0 1 0.04 0.0 0.0 t w e p vp ap
(2)调用rrrk函数求3点的运动参数
形参
m n1 n2 n3 k1 k2 r1 r2 t w e p vp ap
实参
1 2 4 3 2 3 1.11 1.96 t w e p vp ap
(3)程序:对构件3的运动轨迹分析
#include"graphics.h"
#include "subk.c"
#include "draw.c"
main()
{
static double p[20][2],vp[20][2],ap[20][2],del;
static double t[10],w[10],e[10],tdraw[370],wdraw[370],edraw[370];
static int ic;double r12,r23,r34;double pi,dr;double r2,vr2,ar2;int i;FILE*fp;
r12=0.04,r23=1.11,r34=1.96;w[1]=-17.8;del=15;pi=4.0*atan(1.0);dr=pi/180.0;
p[1][1]=0.0;p[1][2]=0.0;p[4][1]=-0.95;p[4][2]=2.0;
printf("\n The Kinematic Parameters of Point 5\n");
printf("No THETA1 t3 w3 e3\n");
printf(" deg rad rad/s rad/s/s\n");
if((fp=fopen("filel20133098.txt","w"))==NULL)
{printf("Can't open this file.\n");exit(0);}
fprintf(fp,"\n The kinematic parameters of point 10\n");
fprintf(fp,"No THETA1 t3 w3 e3\n");
fprintf(fp," deg rad rad/s rad/s/s");
ic=(int)(360.0/del);for(i=0;i<=ic;i++){t[1]=(-i)*del*dr;
bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);
rrrk(1,2,4,3,2,3,r23,r34,t,w,e,p,vp,ap);
printf("\n%2d %12.3f %12.3f %12.3f",i+1,t[1]/dr,t[3],w[3],e[3]);
fprintf(fp,"\n%2d%12.3f%12.3f%12.3f%12.3f",i+1,t[1]/dr,t[3],w[3],e[3]);
wdraw[i]=t[1]/dr;tdraw[i]=t[3];wdraw[i]=w[3];edraw[i]=e[3];
if((i%16)==0){getch();};}
fclose(fp);getch();draw1(del,tdraw,wdraw,edraw,ic);}
(4)数据:随主动件1变化的运动参数
The kinematic parameters of point 3
No THETA1 t3 w3 e3
deg rad rad/s rad/s/s
1 0.000 -1.632 0.014 -6.230
2 -15.000 -1.632 -0.077 -6.097
3 -30.000 -1.634 -0.163 -5.590
4 -45.000 -1.637 -0.240 -4.730
5 -60.000 -1.641 -0.301 -3.553
6 -75.000 -1.646 -0.343 -2.117
7 -90.000 -1.651 -0.362 -0.501
8 -105.000 -1.656 -0.357 1.192
9 -120.000 -1.661 -0.327 2.847
10 -135.000 -1.666 -0.274 4.338
11 -150.000 -1.669 -0.201 5.543
12 -165.000 -1.671 -0.113 6.356
13 -180.000 -1.672 -0.016 6.702
14 -195.000 -1.672 0.082 6.543
15 -210.000 -1.670 0.174 5.892
16 -225.000 -1.667 0.253 4.806
17 -240.000 -1.663 0.313 3.383
18 -255.000 -1.658 0.351 1.746
19 -270.000 -1.653 0.364 0.030
20 -285.000 -1.647 0.352 -1.638
21 -300.000 -1.642 0.317 -3.148
22 -315.000 -1.638 0.261 -4.414
23 -330.000 -1.635 0.189 -5.373
24 -345.000 -1.632 0.105 -5.986
25 -360.000 -1.632 0.014 -6.230
(6)线图:3点水平位移,速度,加速度线图
四杆机构颚板角位置、角速度、角加速度随曲柄转角的变化曲线
五.机构的动态静力分析
5.1六杆铰链式颚式破碎机的静力分析
(1)、(2)、(3)步同运动分析1、2、3
(4)调用bark函数求9的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
2 0 9 2 0.0 0.625 0.0 t w e p vp ap
(5)调用bark函数求10的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
4 0 10 3 0.0 0.5 0.0 t w e p vp ap
(6)调用bark函数求8的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
3 0 8 4 0.0 0.575 0.0 t w e p vp ap
(7)调用bark函数求7的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
6 0 7 5 0.0 0.98 0.0 t w e p vp ap
(8)调用bark函数求11的运动参数
形参
n1 n2 n3 k r1 r2 gam t w e p vp ap
实参
6 0 11 5 0.0 0.6 0.0 t w e p vp ap
(9)调用rrrf对4、5杆件组成的rrr杆组进行静力分析
形参
n1 n2 n3 ns1 ns2 nn1 nn2 nexf k1 k2 t w e p vp ap
实参
3 6 5 8 7 0 11 11 4 5 t w e p vp ap
(10)调用rrrf对2、3杆组成的rrr杆组进行静力分析
形参
n1 n2 n3 ns1 ns2 nn1 nn2 nexf k1 k2 t w e p vp ap
实参
2 4 3 9 10 0 3 0 2 3 t w e p vp ap
(11)调用barf对主动件1进行静力分析
形参
n1 ns1 nn1 k1 p ap e fr tb
实参
1 1 2 1 p ap e fr tb
(12)程序:对质心的运动分析,对固定铰链的静态动力分析,主动反力偶
#include"graphics.h"
#include"subk.c"
#include"subf.c"
#include"draw.c"
main()
{
static double p[20][2],vp[20][2],ap[20][2],del;t[10],w[10],e[10],
static double tbdraw[370],tb1draw[370];fr3draw[370],sita1[370],fr1draw[370];
static double sita2[370],fr2draw[370],sita3[370],we1,we2,we3,we4,we5;
static double fr[20][2],fe[20][2],tb,tb1,fr1,bt1,fr4,bt4,fr6,bt6;
static int ic;double pi,dr;int i;FILE *fp;
char *m[]={"tb","tb1","fr1","fr4","fr6"};
sm[1]=0.0;sm[2]=500;sm[3]=200;sm[4]=200;sm[5]=900;del=15;
sj[1]=0.0;sj[2]=25.5;sj[3]=9;sj[4]=9;sj[5]=50;
t[1]=0.0;w[1]=-17.8;e[1]=0.0;t[4]=0.0;t[6]=90.0;w[6]=0.0;
e[6]=0.0;pi=4.0*atan(1.0);dr=pi/180.0;t[6]=90.0*dr;
p[1][1]=0.0;p[1][2]=0.0;p[4][1]=0.94;p[4][2]=-1.0;
p[6][1]=-1.0;p[6][2]=0.85;
printf("\n The Kinet0-static Analysis of a six-bar Linkase.\n");
printf("No HETA1 fr1 sita1 fr4 sita2 fr7 sita3 tb tb1\n");
printf(" deg N radian N radian N radian N.m N.m\n");
if((fp=fopen("filel20133098","w"))==NULL)
{
printf("Can't open this file.\n");
exit(0);
}
fprintf(fp,"\n The Kinet0-static Analysis of a six-bar Linkase.\n");
fprintf(fp,"No HETA1 fr1 sita1 fr4 sita2 fr7 sita3 tb tb1\n");
fprintf(fp," deg N radian N radian N radian N.m N.m\n");
ic=(int)(360.0/del);
for(i=0;i<=ic;i++)
{
t[1]=(-i*del)*dr;
bark(1,2,0,1,0.1,0.0,0.0,t,w,e,p,vp,ap);
rrrk(-1,2,4,3,2,3,1.25,1.0,t,w,e,p,vp,ap);
rrrk(1,3,6,5,4,5,1.15,1.96,t,w,e,p,vp,ap);
bark(2,0,9,2,0.0,0.625,0.0,t,w,e,p,vp,ap);
bark(4,0,10,3,0.0,0.5,0.0,t,w,e,p,vp,ap);
bark(3,0,8,4,0.0,0.575,0.0,t,w,e,p,vp,ap);
bark(6,0,7,5,0.0,0.98,0.0,t,w,e,p,vp,ap);
bark(6,0,11,5,0.0,0.6,0.0,t,w,e,p,vp,ap);
rrrf(3,6,5,8,7,0,11,11,4,5,p,vp,ap,t,w,e,fr);
rrrf(2,4,3,9,10,0,3,0,2,3,p,vp,ap,t,w,e,fr);
barf(1,1,2,1,p,ap,e,fr,&tb);
fr1=sqrt(fr[1][1]*fr[1][1]+fr[1][2]*fr[1][2]);
bt1=atan2(fr[1][2],fr[1][1]);
fr4=sqrt(fr[4][1]*fr[4][1]+fr[4][2]*fr[4][2]);
bt4=atan2(fr[4][2],fr[4][1]);
fr6=sqrt(fr[6][1]*fr[6][1]+fr[6][2]*fr[6][2]);
bt6=atan2(fr[6][2],fr[6][1]);
we1=-(ap[1][1]*vp[1][1]+(ap[1][2]+9.81)*vp[1][2])*sm[1]-e[1]*w[1]*sj[1];
we2=-(ap[9][1]*vp[9][1]+(ap[9][2]+9.81)*vp[9][2])*sm[2]-e[2]*w[2]*sj[2];
we3=-(ap[10][1]*vp[10][1]+(ap[10][2]+9.81)*vp[10][2])*sm[3]-e[3]*w[3]*sj[3];
we4=-(ap[8][1]*vp[8][1]+(ap[8][2]+9.81)*vp[8][2])*sm[4]-e[4]*w[4]*sj[4];
extf(p,vp,ap,t,w,e,11,fe);
we5=-(ap[7][1]*vp[7][1]+(ap[7][2]+9.81)*vp[7][2])*sm[5]-e[5]*w[5]*sj[5]+fe[11][1]*vp[11][1]+fe[11][2]*vp[11][2];
tb1=-(we1+we2+we3+we4+we5)/w[1];
printf("\n%2d %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f",i+1,t[1]/dr,fr1,bt1/dr,fr4,bt4/dr,fr6/dr,bt6/dr,tb,tb1);
fprintf(fp,"\n%2d %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f",i+1,t[1]/dr,fr1,bt1/dr,fr4,bt4/dr,fr6/dr,bt6/dr,tb,tb1);
tbdraw[i]=tb;tb1draw[i]=tb1;fr1draw[i]=fr6;
sita1[i]=bt6;fr2draw[i]=fr6;sita2[i]=bt6;fr3draw[i]=fr6;sita3[i]=bt6;
if((i%16)==0){getch();}
}
fclose(fp);
getch();
draw2(del,tbdraw,tb1draw,ic,m);
draw3(del,sita1,fr1draw,sita2,fr2draw,sita3,fr3draw,ic,m);
}
extf(p,vp,ap,t,w,e,nexf,fe)
double p[20][2],vp[20][2],ap[20][2],t[10],w[10],e[10],fe[20][2];
int nexf;
{ double pi,dr;
pi=4.0*atan(1.0);
dr=pi/180.0;
if(w[5]<0)
{
fe[nexf][1]=(-t[1]/dr-90.0)*(85000.0/182.0)*cos(-t[5]-pi/2);
fe[nexf][2]=-(-t[1]/dr-90.0)*(85000.0/182.0)*sin(-t[5]-pi/2);
}
else{fe[nexf][1]=0;fe[nexf][2]=0;}
}
(13)数据:6点固定铰链力矢;主动件平衡力偶
The Kineto-static Analysis of a Six-bar Linkase
NO THETA1 fr6 sita6 tb tb1
deg N deg N.m N.m
1 0.000 9904.580 77.690 534.273 534.273
2 -5.000 10027.035 79.096 703.325 703.325
3 -10.000 10141.706 80.761 873.278 873.278
4 -15.000 10248.086 82.670 1038.104 1038.104
5 -20.000 10346.409 84.798 1191.197 1191.197
6 -25.000 10437.556 87.113 1325.633 1325.633
7 -30.000 10522.852 89.576 1434.513 1434.513
8 -35.000 10603.782 92.138 1511.359 1511.359
9 -40.000 10681.663 94.743 1550.551 1550.551
10 -45.000 10757.314 97.329 1547.760 1547.760
11 -50.000 10830.805 99.833 1500.331 1500.331
12 -55.000 10901.317 102.191 1407.585 1407.585
13 -60.000 10967.175 104.339 1270.987 1270.987
14 -65.000 11026.038 106.222 1094.172 1094.172
15 -70.000 11075.232 107.792 882.793 882.793
16 -75.000 11112.158 109.009 644.228 644.228
17 -80.000 11134.700 109.847 387.143 387.143
展开阅读全文