1、目录第一章设计概要 1.1 技术参数 1.2 设计要求 第二章 电路基本概述第三章 .电力总体设计方案第三章 .电力总体设计方案3.1 电路的总设计思路3.2电路的设计总框图第四章 BUCK 主电路设计4.1 Buck变换器主电路原理图4.2 Buck变换器电路工作原理图4.3 主电路保护(过电压保护)4.4 Buck变换器工作模态分析4.5 主电路参数分析第五章 控制电路5.1 控制带你撸设计方案选择5.2 SG3525控制芯片介绍5.3 SG3525各引脚具体功能5.4 SG3525内部结构及工作特性5.5 SG3525构成的控制电路单元电路图第六章 驱动电路原理与设计6.1 驱动电路方案
2、设计与选择6.2 驱动电路工作分析第七章 附录第八章 设计心得第一章设计概要1.1 技术参数: 输入直流电压 Vin=25V,输出电压 Vo=10V,输出电流 Io=0.5A,最 大输出纹波电压 50mV,工作频率 f=30kHz。 1.2 设计要求: (1) 设计主电路,建议主电路为:采用 BUCK 变换器,大电容 滤波,主功率管用 MOSFET; (2) 选择主电路所有图列元件,并给出清单; (3) 设计 MOSFET 驱动电路及控制电路; (4) 绘制装置总体电路原理图,绘制: MOSFET 驱动电压、 BUCK 电路中各元件的电压、电流以及输出电压波形(波形 汇总绘制,注意对应关系);
3、 (5) 编制设计说明书、设计小结。第二章电路基本概述 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或 可调 电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直 流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输 出不之间不隔离。直流斩波电路的种类较多,包括 6 种基本斩波电路: 降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和 Zeta 斩波电路。Buck 电路作为一种最基本的 DC/ DC 拓 扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品 中。根据对输出电压平均值进行调制的方式
4、不同,斩波电路可以分为 脉冲宽度调试、频率调制和混合型三种控制方式,Buck 电路的研究 对电子产品的发展有着重要的意义。 MOSFET 特点是用栅极电压来控制漏极电流,驱动电路简单,需要 的驱动功率小,开关速度快,工作频率高,热稳定性优于 GTR,但 其电流容量小,耐压低,一般只适用于功率不超过 10kW 的电力电子 装置。 功率 MOSFET 的种类:按导电沟道可分为P沟道和 N 沟道。按栅极 电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电 沟道,增强型;对于 N(P)沟道器件,栅极电压大于(小于)零时 才存在导电沟道,功率 MOSFET 主要是 N 沟道增强型。第三章.电力
5、总体设计方案3.1 电路的总设计思路 Buck 变换器电路可分为三个部分电路块。分别为主电路模块,控制电路模块 和驱动电路模块。 主电路模块, 由 MOSFET 的开通与关断的时间占空比来决定输出电压 u。的 大小。 控制电路模块,可用 SG3525 来控制 MOSFET 的开通与关断。 驱动电路模块,用来驱动 MOSFET。 3.2 电路设计总框图 电力电子器件在实际应用中,一般是有控制电路,驱动电路,保护电路和以 电力电子器件为核心的主电路组成一个系统。有信息电子电路组成的控制电路按 照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的 导通或者关断,来完成整个系统的功能
6、。因此,一个完整的降压斩波电路也应该 包括主电路,控制电路,驱动电路和保护电路致谢环节。 根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路, 设计出降压斩波电路的结构框图如下图所示。 第四章 BUCK 主电路设计4.1 Buck 变换器主电路原理图 降压斩波电路的原理图以及工作波形如图 3.1 所示。该电路使用一个 全控型器件 V,图中为 MOSFET。为在 MOSFET 关断时给负载中电 感电流提供通道,设置了续流二极管 VD。斩波电路主要用于电子路 的供电电源,也可拖动直流电动机或带蓄电池负载等。 4.2 Buck 变换器电路工作原理图 直流降压斩波电路使用一个全控型的电压
7、驱动器件 MOSFET,用控 制电路和驱动电路来控制 MOSFET 的导通或关断。当 t=0 时 MOSFET 管被激励导通,电源 U 向负载供电,负载电压为 Uo=U,负 载电流 io 按指数曲线上升;当 t=t1 时控制 MOSFET 关断负载电流经 二极管 VD 续流负载电压 Uo 近似为零,负载电流呈指数曲线下降。 为了使负载电流连续且脉动小通常使串联的电感 L 较大。电路工作时 的波形图如图 4.2 所示。 4.3 主电路保护(过电压保护) 本次设计的电路要求输出电压为 12V,所以当输出电压设定时,一旦 出现过电压,为了保护电路和期间,应立刻将电路断开,及关断MOSFET 的脉冲,
8、使电路停止工作。以为芯片 SG3525 的引脚 10 端为外部关断 信号输入端,所以可以利用 SG3525 的这个特点进行过电压保护。当 引脚 10 端输入的电压等于或超过 8V 时,芯片将立刻锁死,输出脉冲 将立即断开。所以可以从输出电压中进行电压取样,并将取样电压通 过比较器输入 10 端实现电压保护。,从而 过电压保护电路图如下所示: 4.4 Buck 变换器工作模态分析 在分析 Buck 变换器之前,做出以下假设: 开关管 V、二极管 VD 均为理想器件; 电感、电容均为理想元件; 电感电流连续; 当电路进入稳态工作时,可以认为输出电压为常数。 当输入脉冲为高电平,即在 ton时段内,
9、V 导通,此时二极管 VD 反偏 截止,如下图 4.3.1 所示。通过电感 L 的电流随时间不断增大,电源 U 向负载 R 提供功率,同时对电容 C 充电。在电感 L 上将产生极性为 左正右负的感应电动势,储存磁场能量。 假设储能电感 L 足够大,其时间常数远大于开关的周期,流过储能电 感的电流 IL可近似认为是线性的,并设开关 MOS 管 V 及续流二极管都 具有理想的开关特性,它们正向降压都可以忽略 式中起始值 ILv是 V 导通前流过 L 的电流。当 t=ton时,V 导通 L 中的 电流达到最大值 当输入脉冲为低电平,即在 toff时段内,V 截止,电路相当于 V 断开, 如下图 4.
10、3.2 所示。此时,由电感 L 中的电流将减小,为了阻止电流 I0的减小,在其上将产生极性为左负右正的感应电动势,这时二极管 VD 正偏导通,为电感电流提供通路。电感将释放磁能,一方面继续 给负载 R 供电,另一方面对电容 C 充电,把一部分磁能转化为电容中 的电场能。当电感电流下降到某一较小的数值时,电容 C 开始对负载 放电,以维持负载所需的电流。当电路工作于稳态时,负载电流在一 个周期内的初值与终值为相等的(下面插入图片4.3.2)式中起始值 ILP为 V 截止前流过的电流。t=toff时,V 截止,L 中的电 流下降到最小值 当电路工作在稳态时,联系上式解得:由以上分析可得,负载电压的
11、平均值为:上式中, ton为 V 处于导通状态的时间,toff为 Q 处于断开状态的时间; T 为开关周期,即 T=ton +toff;D 为导通占空比,即 D=ton/T;V1 为电 源电压。由该公式可知,负载电压的平均值 V2 的大小由导通占空比 和电源电压决定。在电源电压不变的情况下,其大小可由调节占空比 来改变,且随着占空比的增大而增大,随着占空比的减小而减小 由于占空比 0D1,即 V2V1,输出电压小于输入电压,因此将该电 路称为降压斩波电路。 负载电流平均值为: IO= R V2 上式中,R 为负载电阻。若负载中的 L 的值较小,则在 Q 关断后,可 能会出现负载电流断续的情况。
12、为了保证电流连续,要求串接的电感 L 值足够大 MOSFET 在开通与截止下的电感电容波形图: 4.4 主电路参数分析 主电路中需要确定参数的元器件有直流电源、MOSFET、二极管、电感、 电容、电阻的确定,其参数确定如下: (1) 电源 要求输入电压为 42V。 (2)电阻 因为当输出电压为 12V 时,输出电流为 3A。所以由欧姆定 律 R=U0/I0,可得负载电阻值为 4 欧姆.(3) MOSFET 由图 4.3.2 易知当 MOSFET 截止时,回路通过二极管续流, 此时 MOSFET 两端承受最大正压为 42V;而当=1 时,MOSFET 有最大 电流,其值为 3A。故需选择 Vds
13、s=100V,Id=9.2A 的 IRF520 (4) 二极管 其承受最大反压 42V,其承受最大电流趋近于 3A,考虑 2 倍裕量,故需选择 UN84V,IN6A 的二极管,选用 MUR820 (5)电感 根据 Buck 变换器的性能指标要求及 Buck 变换器输入输出 电压之间的系求出关占空比 D= 12V/42V=0.29 (6)开关频率 f=100KHz (7)电容 设计要求最大输出纹波电压 50mV.) 输出滤波电容的耐压值决定于输出电压的最大值,一般比输出电 压的最大值高一些,但不必高太多,以降低成本。由于最大输出电压 为 12V,则电容的耐压值为 15V。第五章 控制电路 5.1
14、 控制电路设计方案选择 控制电路需要实现的功能是产生控制信号,用于控制斩波电路中主功 率器件的通断,通过对占空比的调节达到控制输出电压大小的目的。 斩波电路有三种控制方式: 1.保持开关周期 T 不变,调节开关导通时间 ton,称为脉冲宽度调制 或脉冲调宽型; 2.保持导通时间不变,改变开关周期 T,成为频率 调制或调频型; 3.导通时间和周期 T 都可调,是占空比改变,称为 混合型。 因为斩波电路有这三种控制方式,又因为 PWM 控制技术应用最为广 泛,所以采用 PWM 控制方式来控制 MOSFET 的通断。PWM 控制就是对 脉冲宽度进行调制的技术。这种电路把直流电压“斩”成一系列脉冲,
15、改变脉冲的占空比来获得所需的输出电压。改变脉冲的占空比就是对 脉冲宽度进行调制,只是因为输入电压和所需要的输出电压都是直流 电压,因此脉冲既是等幅的,也是等宽的,仅仅是对脉冲的占空比进 行控制。 对于控制电路的设计其实可以有很多种方法,可以通过一些数字运算 芯片如单片机、CPLD 等等来输出 PWM 波,也可以通过特定的 PWM 发 生芯片来控制。因为题目要求输出电压连续可调,所以我选用一般的 PWM 发生芯片来进行连续控制。 对于 PWM 发生芯片,我选用了 SG3525芯片,其引脚图如图4.1所示, 它是一款专用的 PWM 控制集成电路芯片,它采用恒频调宽控制方案, 内部包括精密基准源、锯
16、齿波振荡器、误差放大器、比较器、分频器 和保护电路等。 5.2 SG3525控制芯片介绍(1) 工作电压范围:8-35v。 (2) 5.1V 微调基准电源 (3) 振荡器频率工作范围:100Hz-500kHz。(4) 具有振荡器外部同步功能 (5)死区时间可调。 (6) 内置软启动电路。 (7) 具有输入欠电压锁定功能。 (8) 具有 PWM 锁存功能,禁止多脉冲。 (9)逐个脉冲关断。 (10)双路输出(灌电流/拉电流):Ma(峰值) 其11和14脚输出两个等幅、等频、相位互补、占空比可调的 PWM 信号。 脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接 的电阻电容电路共同构
17、成 SG3525 的振荡器。振荡器还设有外同步输 入端(脚3)。脚1 及脚2 分别为芯片内部误差放大器的反相输入端、 同相输入端。该放大器是一个两级差分放大器。根据系统的动态、静 态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反 馈补偿网络,另外当10脚的电压为高电平时,11和14脚的电压变为10 输出。 5.3 SG3525各引脚具体功能: (1) 引脚 1:误差放大器反向输入端。在闭环系统中,该引脚接反 馈信号。在开环系统中,该端与补偿信号输入端(引脚 9)相连,可 构成跟随器。 (2) 引脚 2:误差放大器同向输入端。在闭环系统和开环系统中, 该端接给定信号。根据需要,在该
18、端与补偿信号输入端之间接入信号 不同的反馈网络。 (3) 引脚 3:振荡器外接同步信号输入端。该端接外部同步脉冲信 号可实现与外电路同步。 (4)引脚 4:振荡器输出端。 (5) 引脚 5:振荡器定时电容接入端。 (6) 引脚 6:振荡器定时电阻接入端。 (7) 引脚 7:振荡器放电端。该端与引脚 5 之间外接一只放电电阻, 形成放电回路。 (8) 引脚 8:软启动电容接入端。 (9) 引脚 9:PWM 信号输入端。 (10) 引脚 10:外部关断信号输入端。 (11) 引脚 11:输出端 A。(12) 引脚 12:信号地。 (13) 引脚 13:输出级偏置电压接入端。 (14) 引脚 14:
19、输出端 B。 (15) 引脚 15:偏置电源接入端。 (16) 引脚 16:基准电源输出端。 5.4 SG3525 内部结构和工作特性 (1) 基准电压调整器 基准电压调整器是输出为 5.1V,50mA,有短路电流保护的电压调 整器。它供电给所有内部电路,同时又可作为外部基准参考电压。若 输入电压低于 6V 时,可把 15、16 脚短接,这时 5V 电压调整器不起 作用。 (2) 振荡器 3525A 的振荡器,除 CT、RT 端外,增加了放电 7、同步端 3。RT 阻值决定了内部恒流值对 CT 充电,CT 的放电则由 5、7 端之间外接 的电阻值 RD 决定。把充电和放电回路分开,有利于通过
20、RD 来调节死 区的时间,因此是重大改进。这时 3525A 的振荡频率可表为: 式中:CT, RT分别是与脚5、脚6相连的振荡器 的电容和电阻;dR 是与脚7相连的放电端电阻值。根据任务要求需要 频率为100kHz,所以由上式可取 CT=1F,RT=10,RD=1。可得 f=100kHz.在 3525A 中增加了同步端 3 专为外同步用,为多个 3525A 的联用 提供了方便。同步脉冲的频率应比振荡频率 fS 要低一些。 (3) 误差放大器 误差放大器是差动输入的放大器。它的增益标称值为 80dB,其大 小由反馈或输出负载决定,输出负载可以是纯电阻,也可以是电阻性 元件和电容的元件组合。该放大
21、器共模输入电压范围在 1.83.4V, 需要将基准电压分压送至误差放大器 1 脚(正电压输出)或 2 脚(负 电阻输出)。 3524 的误差放大器、电流控制器和关闭控制三个信号共用一个反 相输入端,3525A 改为增加一个反相输入端,误差放大器与关闭电路 各自送至比较器的反相端。这样避免了彼此相互影响。有利于误差放 大器和补偿网络工作精度的提高。 (4) 闭锁控制端 10 利用外部电路控制 10 脚电位,当 10 脚有高电平时,可关闭误差 放大器的输出,因此,可作为软起动和过电压保护等。 (5) 有软起动电路 比较器的反相端即软起动控制端 8,端 8 可外接软起动电容。该 电容由内部 V re
22、f 的 50A 恒流源充电。达到 2.5V 所经的时间为 点空比由小到大(50)变化。 (6) 增加 PWM 锁存器使关闭作用更可靠 比较器(脉冲宽度调制)输出送到 PWM 锁存器。锁存器由关闭电 路置位,由振荡器输出时间脉冲复位。这样,当关闭电路动作,即使 过流信号立即消失,锁存器也可维持一个周期的关闭控制,直到下一 周期时钟信号使倘存器复位为止。 另外,由于 PWM 锁存器对比较器来的置位信号锁存,将误差放大 器上的噪音、振铃及系统所有的跳动和振荡信号消除了。只有在下一 个时钟周期才能重新置位,有利于可靠性提高。 (7) 增设欠压锁定电路 电路主要作用是当 IC 块输入电压小于 8V 时,
23、集成块内部电路锁 定,停止工作(其准源及必要电路除外),使之消耗电流降到很小(约 2mA)。 (8)输出级 由两个中功率 NPN 管构成,每管有抗饱和电路和过流保护电路, 每组可输出 100mA。组间是相互隔离的。电路结构改为确保其输出电 平或者是高电平或者是低电平的一个电平状态中。为了能适应驱动快 速的场效应功率管的需要,末级采用推拉式电路,使关断速度更快。 11 端(或 14 端)的拉电流和灌电流,达 100mA。在状态转换中, 由于存在开闭滞后,使流出和吸收间出现重迭导通。在重迭处有一个 电流尖脉冲,其持续时间约 100ns。使用时 VC 接一个 0.1f 电容可 以滤去尖峰。 另一个不
24、足处是吸电流时,如负载电流达到 50mA 以上时,管饱和 压降较高(约 1V)。 5.5 SG3525 构成的控制电路单元电路图 第六章驱动电路原理与设计6.1 驱动电路方案设计与选择: 该驱动部分是连接控制部分和主电路的桥梁,该部分主要完成以下 几个功能:(1)提供适当的正向和反向输出电压,使 MOSFET 可靠的开 通和关断;(2)提供足够大的瞬态功率或瞬时电流,使 MOSFET 能迅速 建立栅控电场而导通;(3)尽可能小的输入输出延迟时间,以提高工 作效率;(4) 足够高的输入输出电气隔离性能,使信号电路与栅极驱 动电路绝缘;(5)具有灵敏的过流保护能力。针对以上几个要求,对 驱动电路进
25、行以下设计。针对驱动电路的隔离方式: (1) 采用磁耦隔离,最常用的是用时变压器隔离,即通过一次侧和二 次侧的磁耦联系将电路隔开,从而取到电气隔离的作用。这种方法的 优点是简单,不需要外接电源对器件进行驱动,且传递的效率很高。 10 1 1uf 但同时缺点也很明显,首先磁耦隔离只能用于交流电路,直流电路无 效,其次变压器的体积较大,不利于集成。 (2)采用光电耦合式驱动电路,该电路双侧都有源。其提供的脉冲宽 度不受限制,较易检测 MOSFET 的电压和电流的状态,对外送出过流 信号。另外它使用比较方便,稳定性比较好。但是它需要较多的工作 电源,其对脉冲信号有1s 的时间滞后,不适应于某些要求比
26、较高 的场合。 由于这次设计的电路是直流电路,且要求不是很高,所以选择光耦隔 离。 6.2 驱动电路工作分析: 驱动电路的电路图如图6.2所示: 如图6.2所示,MOSFET 降压斩波电路的驱动电路提供电气隔离环 节。 光耦合器由发光二极管和光敏晶体管组成,封装在一个外壳内。 本电路中采用的隔离方法是,先加一级光耦隔离,再加一级推挽电路 进行放大。采用推挽电路进行放大的原因是因为驱动 MOSFET 的电压 约为10V 左右,而 SG3525芯片提供的电压只有5V 左右,直接连入无 法驱动 MOSFET。并且推挽式电路简单实用,故用推挽式进行电压放 大。 第七章 附录 元器件清单器件名称规格与型
27、号数量直流电源42V1电阻1/4/10/20/1k/2k/10k()1/1/2/1/3/1/1电容1/15/10(uf)1/1/1MOSFETIRF5201续流二极管MUR8201二极管IN414B2滑动变阻器10K1电感145uh1PWM控制器SG35251三极管NPN/PNP1/1光耦合器Optoisol1运算放大器OPAMP1第八章 设计心得 经过两周的电力电子课程设计让我受益匪浅。不仅仅是在知识方面得 到了提升,在交流方面也有了进一步提高。从理论到实践,在课程设 计的这段时间,我遇到了很多困难,但是同时也学到了好多东西。它 不仅巩固了以前所学的理论知识,更是学到了很多课外的东西,锻炼
28、了自己解决实际问题的能力 刚刚看到这个课程设计任务书时,对这些课题很熟悉却无从入手。真 的觉得理想与现实的差距挺大。因为在自己的知识系统中,学习的大 部分都是理论知识。考虑了很久,才确定了设计课题,那就是“降压 斩波电路设计”这个课题时,在复习这章节的同时,也去了图书馆找 了很多资料以便更广地了解这部分的内容,再不懂得地方请教老师, 还有自己网上查资料。经过几天的努力,终于有了一个电路的基本框 架,知道了一个完整的电路应该包含几部分,各部分之间的连接又应 该注意些什么问题等等。 知道了大概的模块之后,我对认真地设计每个模块,在设计过程中发 现问题后,可以再加于完善。实在不懂的问题,可以和团队交
29、流,再 者就是查资料。也正因此,我对直流降压斩波电路有了更深的认识和 了解,同时,也加强了自己的文件检索能力。为了能够是设计更加合 理,对很多实际问题也进行了比较深入的思考。比如,保护电路这个 模块。所以在很大程度上提高了思考能力和解决实际问题的能力。 尤其在控制电路这个环节,花费了很多心思。首先通过不断地查资料, 了解 PWM 控制器(SG3525)的运用,具体理解每个引脚代表什么,功 能是什么,所以很多问题都没有考虑周到,有些难题是和同学们商量 才得出的结果,期间和同组的组员做了很多的沟通和商量,从而解决 了很多问题,这在合作上也是一个不小的进步。 这次的设计经验,在以后的学习、设计中提供
30、了基础。也让我懂得无 论多么大的设计,应该分模块去完成,才会把看似难题的东西解决掉。1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器7. 单片机控制的二级倒立摆系统的研究8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系
31、统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO,2激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油
32、泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单
33、片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS
34、定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的
35、数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研
36、究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的C/OS-的研究82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与
37、实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计95. 基于MSP430单
38、片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADC841单片机的防爆软起动综合控制器的研究105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的
39、空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. PIC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功!单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功!