收藏 分销(赏)

三角形内角和说课稿.doc

上传人:w****g 文档编号:2710709 上传时间:2024-06-04 格式:DOC 页数:4 大小:37.01KB
下载 相关 举报
三角形内角和说课稿.doc_第1页
第1页 / 共4页
三角形内角和说课稿.doc_第2页
第2页 / 共4页
三角形内角和说课稿.doc_第3页
第3页 / 共4页
三角形内角和说课稿.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、三角形的内角和说课稿一、说教材1、说课内容今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第85页的三角形的内角和。2、教材分析三角形的内角和是探索型的教材。是在学生学习了三角形、长方形等基本图形,以及角的度量、三角形的特征、分类的基础上进行教学的,学生对这一知识的理解和掌握又将为进一步学习几何知识打下坚实的基础。仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结

2、构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。3、教学目标根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现三角形内角和等于180度的规律。数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。4、教学重点难点根据本节课的教

3、学目标及对编者意图的理解。将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。5、教学具准备每个4人小组准备4个不同的三角形(锐角三角形、钝角三角形、直角三角形的纸片至少各一个,且要求大小不一)、实验报告单一份;学生每人准备量角器、小剪刀、白纸各一张。二、说教法学法我要说的第二块是教法学法。新课程标准的基本理念就是要让学生人人学有价值的数学。强调教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。因此,我运用猜一猜-量一量-拼-拼-折一折

4、-看一看的教学法, 让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式。在整个教学设计上力求充分体现以学生发展为本教育理念,将教学思路拟定为谈话激趣设疑导入- 猜想-验证自主探究-巩固新知-全面提升,努力构建探索型的课堂教学模式。当然,一堂课的效果如何,还要看课堂结构是否合理。接下来,我就来说说我的教学程序设计。三、说教学流程根据我对教材的把握和对学情的了解,设计了4个环节展开教学。一、创设情境,发现问题小游戏:猜一猜藏在信封后面的是什么三角形。

5、 师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释不能是这样,而不能解释为什么不能是这样。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让

6、学生在疑问与猜想中寻找验证的方法。)教学进入第二环节-引导探究二、动手操作,探究规律1介绍内角、内角和,并提出猜想师:我们现在研究三角形的三个角,都是它的内角。课件演示:三角形的三个内角 师:今天我们就来一起探究三角形的内角和。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。2确定研究范围师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)请你想个办法吧!(通过引导学生分析,研究哪几类三角形,就能代表所有的三角形这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)3建立模型,解决问题(一)测量法:(1)学生自然想

7、到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?(3)记录小组测量结果及讨论结果实验名称三角形内角和实验目的探究三角形内角和是多少度。实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片方法一三角形的形状每个内角的度数三个内角的 和方法二我的发现(4)学生汇报量的方法,师请同学评价这种方法。 师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180左右

8、,究竟是不是一定就是180度呢,谁还有别的方法?(二)剪拼法 学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180?(三)折拼法 学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。 这三种方法都不错,在操作的过程中,有

9、时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?(四)演绎推理法(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)师:你认为这种方法好不好?我们看看是不是这么回事。(演示课件:两个完全相同的三角形内角和等于360,一个三角形内角和等于180)师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)学生用的方法会非常多,但它们的思维水平是不平行的。直接

10、测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是3602180,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。

11、本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四,又会发现一些新的规律。】4验证猜想三角形的内角和是180度5进一步感受(1)三角形内角和与三角形大小的关系教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?(2)三角形内角和与三角形形状的关系(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化

12、,内角和却总是不变的)你有什么新发现吗?如果老师把一个角一直往下拽,猜一猜会怎样?(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)6解释课前问题用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。三、拓展应用,深化创新本节课的练习由易到难,设计成三个层次。1、基本练习-形成技能 2、变式练习-巩固技能 3、综合练习-发展提高技能1介绍科学家帕斯卡(出示

13、帕斯卡的资料)师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。2多边形边形内角和 (设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)四、总结全课,全面提升我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。整个教学设计以新课程标准的基本理念为指导,做到导入新课-新,引导探究-实,分层训练-活,新课总结-精。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服