1、难点6 电磁感应中动量定理和动量守恒定律的运用1. 如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 2. 如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(aL)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(vv0),那么线圈 A.完全进入磁场中
2、时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 3. 在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离.4. 如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨
3、电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5: 如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。 6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触
4、且可自由滑动。先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则(1)此时b的速度大小是多少?(2)若导轨很长,a、b棒最后的运动状态。7、:两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50。在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过T=5.0s,金属杆
5、甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?8.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒ab和cd,构成矩形回路。已知两根导体棒的质量均为m、电阻均为R,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd静止、ab有水平向右的初速度v0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab中电流的大小和方向;(2)从开始到导体棒cd达到最大速度的过程中,矩形回路产生的焦耳热;(3)当ab棒速度变为v0时,cd棒加速度的大小。b
6、acdBRL9、如图,相距L的光滑金属导轨,半径为R的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP范围内有方向竖直向下、磁感应强度为B的匀强磁场金属棒ab和cd垂直导轨且接触良好,cd静止在磁场中,ab从圆弧导轨的顶端由静止释放,进入磁场后与cd没有接触已知ab的质量为m、电阻为r,cd的质量为3m、电阻为r金属导轨电阻不计,重力加速度为g(1)求:ab到达圆弧底端时对轨道的压力大小(2)在图中标出ab刚进入磁场时cd棒中的电流方向(3)若cd离开磁场时的速度是此刻ab速度的一半,求:cd离开磁场瞬间,ab受到的安培力大小10、(20分)如图所示,电阻均为R的金属棒ab,a棒的质量
7、为m,b棒的质量为M,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a棒一水平向左的的初速度v0,金属棒ab与轨道始终接触良好且a棒与b棒始终不相碰。请问:(1)当ab在水平部分稳定后,速度分别为多少?损失的机械能多少?(2)设b棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a棒已静止在水平轨道上,且b棒与a棒不相碰,然后达到新的稳定状态,最后a,b的末速度为多少? (3)整个过程中产生的内能是多少?BabcdR11.(18分)如图所示,电阻不计的两光滑金属导轨相距L,放在水平绝缘桌面上,半径为R的1/4圆弧部分处在竖直平面内
8、,水平直导轨部分处在磁感应强度为B,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab、cd垂直于两导轨且与导轨接触良好。棒ab质量为2 m,电阻为r,棒cd的质量为m,电阻为r。重力加速度为g。开始棒cd静止在水平直导轨上,棒ab从圆弧顶端无初速度释放,进入水平直导轨后与棒cd始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab与棒cd落地点到桌面边缘的水平距离之比为3: 1。求:(1)棒ab和棒cd离开导轨时的速度大小;(2)棒cd在水平导轨上的最大加速度;(3)两棒在导轨上运动过程中产生的焦耳热。r1bar2B12(20分)如图所示,宽度为L的平行光滑的金属轨道,左端
9、为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道。水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场。一根质量为m的金属杆a置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a、b未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a、b棒的电阻分别为R1、R2,其余部分电阻不计。在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大?(2)自b释放到a到达右端半圆轨道最高点过程中系统产生的焦耳热
10、是多少?(3)a刚到达右端半圆轨道最低点时b的速度是多大?13两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=100cm,在左端斜轨道部分高h=1.25m处放置一金属杆a,斜轨道与平直轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b,杆Ab电阻Ra=2,Rb=5,在平直轨道区域有竖直向上的匀强磁场,磁感强度B=2T。现杆b以初速度v0=5m/s开始向左滑动,同时由静止释放杆a,杆a滑到水平轨道过程中,通过杆b的平均电流为0.3A;a下滑到水平轨道后,以a下滑到水平轨道时开始计时,Ab运动图象如图所示(a运动方向为正),其中ma=2kg,mb=1kg,g=10m/s2,求(1)杆a
11、落到水平轨道瞬间杆a的速度v;(2)杆a 在斜轨道上运动的时间;(3)在整个运动过程中杆b产生的焦耳热。14.(12分)如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d、方向竖直向上的匀强磁场I,右端有另一磁场II,其宽度也为d,但方向竖直向下,磁场的磁感强度大小均为B。有两根质量均为m、电阻均为R的金属棒a和b与导轨垂直放置,b棒置于磁场II中点C、D处,导轨除C、D两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K倍,a棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的
12、距离成正比,即。求:(1)若a棒释放的高度大于h0,则a棒进入磁场I时会使b棒运动,判断b 棒的运动方向并求出h0为多少? MNPQBBabddCDIII(2)若将a棒从高度小于h0的某处释放,使其以速度v0进入磁场I,结果a棒以的速度从磁场I中穿出,求在a棒穿过磁场I过程中通过b棒的电量q和两棒即将相碰时b棒上的电功率Pb为多少?15(2014届海淀期末10分)如图21所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计。水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场左边界在水平段导轨的最左端,磁感强度大小为B,方向竖直向上;磁场的磁感应强
13、度大小为2B,方向竖直向下。质量均为m、电阻均为R的金属棒a和b垂直导轨放置在其上,金属棒b置于磁场的右边界CD处。现将金属棒a从弯曲导轨上某一高处由静止释放,使其沿导轨运动。设两金属棒运动过程中始终与导轨垂直且接触良好。(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为mg,将金属棒a从距水平面高度h处由静止释放。求:金属棒a刚进入磁场时,通过金属棒b的电流大小;若金属棒a在磁场内运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放时的高度h应满足的条件;(2)若水平段导轨是光滑的,将金属棒a仍从高度h处由静止释放,使其进入磁场。设两磁场区域足够大,求金属棒a在磁场内
14、运动过程中,金属棒b中可能产生焦耳热的最大值。图21B2BMPQNCDba参考答案:1、2、4S1:S2=2:1。5、(1)自由下滑,机械能守恒: 由于、串联在同一电路中,任何时刻通过的电流总相等,金属棒有效长度,故它们的磁场力为: 在磁场力作用下,、各作变速运动,产生的感应电动势方向相反,当时,电路中感应电流为零(),安培力为零,、运动趋于稳定,此时有: 所以 、受安培力作用,动量均发生变化,由动量定理得: 联立以上各式解得:,(2)根据系统的总能量守恒可得:6、解析 (1) 当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小
15、相等。释放棒后,经过时间t,分别以和为研究对象,根据动量定理,则有: 代入数据可解得:(2)在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小。最后,两棒以共同的速度向下做加速度为g的匀加速运动。7、解析 设任一时刻两金属杆甲、乙之间的距离为,速度分别为和,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变由法拉第电磁感应定律,回路中的感应电动势:回路中的电流:杆甲的运动方程:由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F的冲量:联立以上各式解得代入数据得8.
16、15m/s 1.85m/s8、【解析】:(12丰台期末12分)(1)ab棒产生的感应电动势 ,(1分)ab棒中电流 ,(1分)方向由 (1分) (2)当ab棒与cd棒速度相同时,cd棒的速度最大,设最大速度为由动量守恒定律 (1分) (1分)由能量守恒关系 Qmv(2m)v (1 分) Qmv (1分)(3)设ab棒的速度为时, cd棒的速度为由动量守恒定律:(1分)。; ; I= I(2分)cd棒受力为 (1分);此时cd棒加速度为 (1分)9、(1)设ab到达圆弧底端时受到的支持力大小为N,ab下滑机械能守恒,IbacdBR有: 由牛顿第二定律:;联立得:由牛顿第三定律知:对轨道压力大小为
17、(2)如图(2分)(如用文字表达,正确的照样给分。如:d到c,或dc)(3)设cd离开磁场时ab在磁场中的速度vab,则cd此时的速度为,ab、cd组成的系统动量守恒,有:ab、cd构成的闭合回路:由法拉第电磁感应定律:闭合电路欧姆定律:安培力公式:联立得10、10、(1)对ab棒水平轨道分析,动量守恒;是稳定时ab棒共同速度 -3分,解得 -1分,损失的机械能为 -4分(2)由于b棒在冲上又返回过程中,机械能守恒,返回时速度大小不变 -2分b棒与a棒向右运动过程中,直到稳定,动量守恒: -3分达到新的稳定状态a,b的末速度:-2分(3)整个过程中产生的内能等于系统机械能的减少量 -3分解得:
18、-2分11(1)设ab棒进入水平导轨的速度为,ab棒从圆弧导轨滑下机械能守恒:( 2分)离开导轨时,设ab棒的速度为,cd棒的速度为,ab棒与cd棒在水平导轨上运动,动量守恒, ( 2分) 依题意,两棒离开导轨做平抛运动的时间相等,由平抛运动水平位移可知:=x1:x2=3:1 ( 2分),联立解得 , ( 2分)(2)ab棒刚进入水平导轨时,cd棒受到的安培力最大,此时它的加速度最大,设此时回路的感应电动势为, ( 1分), ( 1分)cd棒受到的安培力为: ( 1分)根据牛顿第二定律,cd棒的最大加速度为: ( 1分)联立解得: ( 2分)(3)根据能量守恒,两棒在轨道上运动过程产生的焦耳热
19、为:( 2分)联立并代入和解得: ( 2分)12(20分)(1)由机械能守恒定律: -4分 b刚滑到水平轨道时加速度最大,E=BLvb1,由牛顿第二定律有:F安=BIL=Ma -4分(2)由动量定理有: -BILt=Mvb2Mvb1, 即:-BLq=Mvb2Mvb1 根据牛顿第三定律得:N=N=mg, -6分(3)能量守恒有 3分 动量守恒定律 3分13(1), (2)b棒,得(3)共产生的焦耳热为B棒中产生的焦耳热为14、14(12分):(1)根据左手定则判断知b棒向左运动。(2分)a棒从h0高处释放后在弯曲导轨上滑动时机械能守恒,有 得: (1分)a棒刚进入磁场I时 , 此时感应电流大小
20、此时b棒受到的安培力大小,依题意,有,求得:(3分)(2)由于a棒从小于进入h0释放,因此b棒在两棒相碰前将保持静止。流过电阻R的电量 ;又因:所以在a棒穿过磁场I的过程中,通过电阻R的电量:,故:(3分)(没有推导过程得1分)将要相碰时a棒的速度 (1分)此时电流:(1分),此时b棒电功率:15(1) a棒从h0高处释放后在弯曲导轨上滑动时机械能守恒,有 解得: a棒刚进入磁场I时 , 此时通过a、b的感应电流大小为 解得: a棒刚进入磁场I时,b棒受到的安培力大小 为使b棒保持静止必有 由 联立解得: (2)由题意知当金属棒a进入磁场I时,由左手定则判断知a棒向右做减速运动;b棒向左运动加速运动。二者产生的感应电动势相反,故当二者的感应电动势大小相等时闭合回路的电流为零,此后二者均匀速运动,故金属棒a、b均匀速运动时金属棒b中产生焦耳热最大, 设此时a、b的速度大小分别为与,由以上分析有:BL =2BL 对金属棒a应用动量定理有: 对金属棒b应用动量定理有: 联立解得 ;由功能关系得电路产生的总电热为: 故金属棒b中产生焦耳热最大值为