资源描述
18.2 勾股定理的逆定理(一)
学习目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
重点:掌握勾股定理的逆定理及简单应用。
难点:勾股定理的逆定理的证明。
一.预习新知(阅读教材P73 — 75 , 完成课前预习)
1.三边长度分别为3 cm、4 cm、5 cm的三角形与以3 cm、4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2.你能证明以6cm、8cm、10cm为三边长的三角形是直角三角形吗?
图18.2-2
3.如图18.2-2,若△ABC的三边长、、满足,试证明△ABC是直角三角形,请简要地写出证明过程.
4.此定理与勾股定理之间有怎样的关系?
(1)什么叫互为逆命题
(2)什么叫互为逆定理
(3)任何一个命题都有 _____,但任何一个定理未必都有 __
5.说出下列命题的逆命题。这些命题的逆命题成立吗?
(1) 两直线平行,内错角相等;
(2) 如果两个实数相等,那么它们的绝对值相等;
(3) 全等三角形的对应角相等;
(4) 角的内部到角的两边距离相等的点在角的平分线上。
二.课堂展示
例1:判断由线段、、组成的三角形是不是直角三角形:
(1); (2).
(3); (4);
三.随堂练习
1.完成书上P75练习1、2
2.如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?为什么?
3.A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?
4.思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?
四.课堂检测
1.若△ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定△ABC的形状.
2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?
3.已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
五.小结与反思
18.2勾股定理逆定理(2)
学习目标:
1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。
2.培养逻辑推理能力,体会“形”与“数”的结合。
3.在不同条件、不同环境中反复运用定理,达到熟练使用,灵活运用的程度。
4.培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。
重点:勾股定理的逆定理
难点:勾股定理的逆定理的应用
一.预习新知
已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD的面积。
归纳:求不规则图形的面积时,要把不规则图形
二.课堂展示
例1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
图18.2-3
例2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
三.随堂练习
1.完成书上P76练习3
2.一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为
A 3:4:5 B 5:4:3 C 20:15:12 D 10:8:2
3.如果△ABC的三边a,b,c满足关系式 +(b-18)2+=0则△ABC是 _______三角形。
四.课堂检测
1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是( )
A.等腰三角形;
B.直角三角形;
C.等腰三角形或直角三角形;
D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。
3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且AB⊥BC。
求:四边形ABCD的面积。
4.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。
5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
6.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定△ABC的形状。
7.如图,在正方形ABCD中,F为DC的中点,E为BC上一点且EC=BC,求证:∠EFA=90。.
五.小结与反思
展开阅读全文