收藏 分销(赏)

hqj500型节油车车架优化设计.doc

上传人:天**** 文档编号:2654350 上传时间:2024-06-03 格式:DOC 页数:64 大小:4.06MB
下载 相关 举报
hqj500型节油车车架优化设计.doc_第1页
第1页 / 共64页
hqj500型节油车车架优化设计.doc_第2页
第2页 / 共64页
hqj500型节油车车架优化设计.doc_第3页
第3页 / 共64页
hqj500型节油车车架优化设计.doc_第4页
第4页 / 共64页
hqj500型节油车车架优化设计.doc_第5页
第5页 / 共64页
点击查看更多>>
资源描述

1、摘 要面对国际国内能源的减缩,节能减排已经成为汽车业所面临的主题。节能环保具有现实意义和深远意义。车架是汽车的重要组成部分,承受车上装置和来自地面的交变作用力,需要满足一定的刚度和强度。由HONDA公司发起的节能竞技大赛将会促进更加节能减排的汽车的问世。汽车节能可以通过很多渠道做到,本设计主要从车辆的轻量化角度出发,通过减少车架质量,从而在满足车架刚度的强度的条件下来进一步减少节油车整车质量。本设计对整车做了整体总布置,确定了重心的位置。而且通过PRO/E软件设计出了三个不同结构的模型,然后将三个车架模型转换成工程图。最后通过ANSYS软件多车架进行进一步的有限元分析,其中包括静力结构分析,模

2、态分析,和基于实际情况的有限元优化设计。由于车架结构的复杂性,通过有限元软件不但可以减少繁重的计算量,而且可以有效提高计算精度。通过静力结构可以更为直观的反映出车架受的最大应力和变形,同时便于三种车架比较。通过模态分析可以看出车架的动态特性,看其是否在发动机怠速状态下与发动机发生共振,应该避免共振。车架优化设计原则上是以梁段横截面的高、宽和壁厚为设计变量(DV),以总应力和位移为状态变量(SV),以车架总重量为目标函数的设计过程。但基于实际,本优化设计是在选出最好的车架模型的基础之上通过加减不同的梁,变换在不同处的梁截面,从而达到对车架优化的目的,进一步实现整车的轻量化而使得节能车更节能、更环

3、保。 关键词:节能车;车架;轻量化;三维建模;静力分析;模态分析;优化设计ABSTRACTFacing the reduce of resource in our country or in the whole world, saving resource and protecting the environment are becoming more and more important nowadays. They have direct and huge meanings .The frame plays an important part in the car.It bends cha

4、nging machanics from the car and ground, and should satisfied some strength. The composition which is put out by the HONDA Corporation would make more economical car be possible. We have many ways ,but my design is to try to make the frame much lighter. By doing this we can get the frame which meet

5、our requiry. My design do the work that make the cars components be in its really destination and make sure the location of its gravity. I have made three modes by PRO/E software and changed they into engineering paintings. At last I try to test by softwareANSYS,including statical analysis and motal

6、 analysis and getting better results by compariment .because of the frames not simpty, analysising by the sortware is more convinent and we can get more accute resaunts. By statical analysis we can get directly pictures of the whole machanic and the leave of the move from is original position. By mo

7、tal analysis we can diagnose that if the frame will shock with the engine at the same pace. We should get the best resaunts by regarding the width and height in the cut face as the DV, by regarding the whole strength and the leave move from its original location as its SV, by regarding the gravity a

8、s its objective function. After thinking the reality, based on finding the best modes, I change different size of different beams so that we can get the best resaunts . Finally will get the most economical frame. It will make the economical car much better in realm of economy and will be good for ou

9、r environment.Key words: Fuel Efficient Veicle; Frame; Lightweight; Statical Analysis; Motal Analysis ; Optimizasion Design II目 录摘要IAbstractII第 1章 绪论11.1 节油车的研究背景11.2 HONDA节能竞技大赛的规则简介21.3节能赛车的节能技术简介31.4节能赛车的车架简介41.5节能赛车车架的研究的目的和意义61.6 HQJ-500型节油车车架研究的基本内容及技术路线7第 2 章 HQJ-500型车架结构设计与总体布局82.1 节油车车架选用材料

10、82.2 节油车车架结构设计82.3 节油车总体布局82.4 节油车整体质心位置的确定102.5 本章小结14第 3 章 基于PRO/E的模型的构建153.1 Pro/E软件简介153.2 车架三维模型的构建153.2.1 节油车车架方案一模型163.2.2 节油车车架方案二模型203.2.3 节油车车架方案三模型233.3 本章小结26第 4 章 有限元分析与优化设计274.1 有限元分析的简介274.1.1 有限元法及分析过程简介274.1.2 ANSYS软件简介304.2 基于对该车车架分析的软件预设置324.2.1 PRO/E和ANSYS接口的创建324.2.2 设置内存与选求解器34

11、4.3 节油车车架的结构静力分析384.3.1 ANSYS参数的定义384.3.2 网格的划分384.3.3 施加约束和载荷394.3.4 车架的结构静力分析444.3.5 车架静力分析的对比及阶段性结论504.4 基于实际的节油车车架优化设计504.4.1 优化设计的基本概念504.4.2 基于实际的车架结构的优化设计514.4.3 车架优化设计的阶段性结论534.5 车架的模态分析534.5.1 有限元模态分析简介534.5.2 优化后车架的模态分析534.5.3 优化后车架模态分析的结论574.6 本章小结57结论58参考文献59致谢61附录63附录A63附录B68 第1章 绪 论1.1

12、 节油车的研究背景节能与环保是当今世界的重要课题。汽车工业也面临了创新、优化产品类型的新挑战,以适应广大民众和社会的需求。其实,汽车的从无到有,由简单到复杂,由追求的目标的单一化发展到追求速度、舒适性等方面的多元化,一直在升级换代。百年间,在节约能源上有很大进展。整车轻量化,降低轮胎的滚动阻力,降低空气阻力,变速器多挡及无挡化,代用燃料的使用等思想就恰恰是人们对汽车在节能领域的总结和探索。上个世纪八十年代的世界性课题之一就是“节能”,本田技研钻研节能课题的成果之一,就是推出了油耗仅为160km/L的新经济性车型spuercub,并为纪念这一车型的推出而举办了节能车竞技大赛。第一届大赛在铃鹿赛道

13、上举行,比赛分为第一组合第二组两类。第一组的参赛车辆为搭载了本田50cc冲程引擎的市售二轮车,参赛选手为16岁以上的有驾驶执照者,是使用一定量的燃料比赛行驶多长的距离的竞技。另外,第二组的参赛的车辆为搭载一台50cc4冲程发动机的原创车型,参赛选手为18岁以上有驾驶执照者,是在规定的路程中以平均25km/h以上的时速行驶后比较油耗的竞技。随着大赛举办次数的增多,油耗竞技的运动性和靠自己的智慧、技术制作车辆并不断改良的魅力使之越推越广,凭参赛者自己的双手扩大了影响,使大赛不断成长至今。21世纪节约能源、节省资源之外,环保工作也是刻不容缓。但是另一方面,能够随时去到自己想的地方去这种对车辆灵便性的

14、要求也越来越高。要解决这一矛盾,除了投入科学技术之外,还需要使用者掌握经济智慧的使用方法。以“挑战一升,环保一生”为口号的Honda节能竞技大赛,2007年正式登陆中国,参赛车辆统一搭载了由Honda公司提供的单缸四冲程发动机,车身和底盘等靠自己设计。比赛时用一定量的油在跑道内行驶,换算成一升油能在跑道上行驶多少千米,油耗少,则胜出。比赛旨在让更多的人体会到“低油耗就是环保”。 Honda中国节能竞技大赛是以搭载Honda4冲程的发动机为基础装置,分为两个组别,分别是市售车级别和节能车级别。其中节能车级别又分为学生组别、Honda关联企业组别和普通组别。现在学生组别一般由高校老师带领,学生动手

15、动脑的积极参与。去年去我校黑龙江工程学院在2010年的Honda中国节能竞技大赛上取得了很好的成绩。1.2 HONDA节能竞技大赛规则简介凡参赛的车辆必须符合大赛的规则,车手在规定的时间内行驶玩规定的路程,然后测量油耗。凡违反大赛规则的队伍将被取消参赛资格。具体比赛的进行流程在本说明书就不在赘述。下面就赛车规则予以简单的介绍。要求参赛车辆必须为3轮以上(包括3轮),要求其结构无论是停止还是行驶时都为三轮以上(包括三轮)结构且能够站立。全高要求在1.8米以下,轴距要求在1.0米以上,全长要求在3.5米以下,轮距要求在0.5米以上,全宽要求在2.5米以下,排气管要求不能超出车身后面以及侧面10厘米

16、以上,刹车配线等结构需要从车内穿过,以免与地面接触造成摩擦。在安全性上,为提高安全性,车身结构必须保证行驶时车手的头盔前轮车轴的后方,另外,发生冲撞时车身结构需避免头部直接受到撞击。在驾驶姿势的状态下,车身结构要确保车手的脚不会伸出车架的前方,车辆底板不能与地面接触,保证车手的全身完全完全与地面脱离。车手的臀部与地面保持60厘米以上的距离且脚步有安放的位置除外。另外发生撞击时车身结构需避免身体直接受到撞击。所有的参赛车辆必须将主办方分发的号码牌。参赛号码粘贴在车身两侧及车辆前端清楚可见的位置,共三处。号码牌周围25厘米范围内不得粘贴于比赛无关的内容,号码牌丢失将无法评定成绩。发动机以HONDA

17、提供的四冲程125cc发动机为基础,可自由改造,但要保证汽缸盖、曲轴箱、曲轴使用下发的发动机的零部件,且排气量在125cc以下,为自然吸气式。赛车至少要配备两套的独立的制动系统。并且每套系统都要有操作杆,需保证车手能够独自完成安全有效的刹车。此外,制动钳、制动垫等的固定安装也要充分考虑其安全性。制动操作杆必须固定在车身上。所有车辆必须配备车手能以正常驾驶姿势启动发动机的位置。但禁止靠起动机装置的动力前进。启动装置只有在断开离合器时才能启动。另外,在没有制动的情况下,启动发动机的的车子不允许前行。车辆搭载的蓄电池必须是普通市售的产品。前方所有的 车辆需保证车手以正常驾驶姿势行驶时正前方的事业左右

18、宽度至少90度,而且保证不使用反射镜、棱镜、潜望镜等直接可视高为80厘米的物体。所有参赛车辆为确保后方视野,必须在左右各装备一个带框的后视镜。单个后视镜的镜面面积必须在40平方厘米以上。参赛者在比赛时必须使用主办方供给的专用燃油和带编号的燃油瓶,在比赛期间领取的燃油瓶若发生损坏,应该予以赔偿。1.3 节油赛车的节能技术简介为能提高节油车的节能特性,可考虑一下几个方面:1、传动系统 输出功率固定为2速挡,可省略变速器,减轻发动机本身的质量。不过,上述情况下若要车辆能够行驶并发挥最高车速,则需通过安装在车轮上的链轮齿轮比来决定。使用自行车用自由轮毂(棘轮齿轮),可以减少车轮旋转阻力,并且可防止发动

19、机停止时发动机制动造成的减速和燃油消耗。因为要反复切换发动机驱动、惯性行驶,就必须对链条防松装置中的弹簧等加以调整,防止在使用驱动力时链条脱落。2、点火系统 火花塞通过采用双火花塞的形式,可以使稀薄燃烧时燃烧室内的燃烧稳定且充分,并且能缩短燃烧时间,减少爆震。采用双火花塞时,要把握燃烧室的形状,防止添加的火花塞互相干扰。另外,进行加工时,最好事先准备好半旧的汽缸盖等供加工联系用。点火系的电气部分可借用能使2根火花塞同时点火的摩托车用部件。去掉交流发电机、飞轮部分以提高机械效率,使用蓄电池向火花塞提供电力,火花塞使用高压白金V火花塞。3、汽缸对汽缸盖上汽缸接触面进行磨削及研磨,同时,通过使用薄汽

20、缸垫能提高压缩比;通过优化化油器到吸气口之间的进气支管的长度,可提高惯性吸气的填充效果;通过将排气管直管化并调节其长度,可提高惯性排气量;切削气门挺杆减轻重量,并对气门和连杆的表面进行研磨以降低转动惯性,同时防止附着过多的润滑油;发动机油为比赛期间的消耗品,可采用自然落下式,卸下既有的润滑系统以减轻重量;通过研磨吸气、排气口内部,减低供气排气摩擦阻力;由于发动机的驱动时间较少,为保温可去掉冷却风扇,这样也可减轻重量;吸气部的各个接合部位提高气密性可以使用填隙料等密封。4、化油器要延长全开驾驶时间,可变更化油器的主喷嘴、怠速喷嘴的直径,同时根据行驶基准线测定最佳调整值(以supercub 的整备

21、信息为基础调整)。另外,天气会使最佳值发生变化,所以在比赛之前将各种天气情况下的设定值整理成数据库,会比较方便。5、车架为减轻底盘的重量,可以吧发动机当做车架的一部分。一般来说车架也可使用方钢材加固定螺栓的结构,但为了减轻重量减少体积,建议使用空心圆钢焊接而成的结构。另外,在需要强度的地方,可以加入支撑件。加强筋等增加强度;座位部为了支撑车手的体重需要进行必要加固,还要安装靠背使车手能经住长时间驾驶,靠背还可兼做发动机的隔板;板材可以通过开适度的孔等方法以减轻重量。6、转向系统为确保视野,车手的驾驶姿势以及视野要求会使车轮的设置位置受到很大限制,所以应先确定车手的驾驶姿态;根据连杆臂的长度和转

22、向横拉杆的长度,决定方向盘舵角和实际舵角之比、内轮差。另外,有整流罩时,还需考虑转向时车轮和整流罩的互相干扰问题;关于前轮系统的定位,请在搭载了发动机、车手就坐时车身弯曲的情况下,调整到最佳角度,并注意阻力的减轻。特别是前轮前束和外倾角最好趋于0;转向臂的上部由于承受车辆荷重,在保持高强度的同时,可以在里面加入推力轴承,增加转向的顺滑性;轮胎对方向盘造成反冲,可以通过固定转向臂安装部位上下来调整,也可防止行驶时过度转向。7、车轮和轮胎建议使用速度竞技的自行车的车轮和轮胎;在正式比赛时要将车轮轴承内的润滑脂用清洁器清除,减少滚动阻力;为减少轮辐造成的空气阻力,最好使用板轮,使用辐条轮时,表面用聚

23、乙烯板盖住比较有效;在一小曲率半径过弯时轮胎要承受与普通自行车不同的横向力,为了此时保证车轮不爆胎,所以车轮和轮胎的接合,要是用更强的粘着剂;为减少接地面积降低滚动阻力,轮胎内压要比普通竞技自行车胎压高;轮胎为单支撑时,可以借用速度竞技用轮椅的轮毂。1.4 节油赛车车架简介若车身的骨架车架制作完成,再加上发动机、车轮、转向装置、座席、整流罩,赛车即制作完成。制作车架时,需要便考虑发动机的安装、驱动装置的调整、车轴的支撑方式,转向装置的行驶等。下图显示了汽车用车架的类型,但最近的轿车厂使用这些车架的复合型甚至无骨架结构。竞技节能大赛车辆必须更轻便、同时能支撑发动机和车手的重量。在其中焊接管道或型

24、钢,组成车架最有利。但这需要焊接设备和技术做支撑。在车架的类型中,最常用的是平板式和脊骨式,自己动手制作时需要注意转向装置的型式,确定车手的驾驶姿势。另外,安装整流罩时,要考虑车手的上下车方式和装卸方式,车架要支撑车手、发动机的重量,请事先考虑驾车时的变形量后,决定各个部位的安装角度。车架使用木材构建时工作等会非常容易,但强度和刚度都不足,此时,使用带板钢作为补强材料会更有效。图1.1 现代汽车车架类型图在节油车车架的结构上,曾经有人将车架抽象成两种模型,他们分别是上浮式和下沉式。本设计的方案三就参考了所谓下称式车架的结构。下图为前人的总结的两种车架形式(上浮式和下沉式)。 图1.2 上浮式车

25、架4 图1.3 下沉式车架41.5 节油赛车车架研究的目的和意义1、车架优化设计的目的对节油车的车架进行优化设计的目的从狭义上讲:当代大学生可以理论联系实际,将所学用于所用,激发创新意识,深化专业技能,了解汽车某领域的发展步伐,使得工科类的大学生有一种责任感和使命感,为将来的节油车产品创造出大批设计人才;同时对节油车的车架进行优化设计更会是对我个人的一次历练,对个人的发展同时也起到一定的奠定作用。通过设计节油车不仅可以把课堂所学的理论知识和实际操作挂钩,还可以更多地体会设计创作带来的乐趣,充分发挥个人创作才能。对节油车的车架进行优化设计的目的从广义上讲:目前国际国家能源紧缩,节油车的问世具有一

26、定的可行性和现实意义。目前这种国际国内的以这种竞赛为导向的节油车优化设计必然会对将来经济型汽车的问世起到一定的奠定作用。而通过车架结构优化设计,对车架进行轻量化设计又能有效的减少车重,从而降低油耗。2、车架优化设计的意义经济意义体现在:随着我国经济全球化的不断加快,我国对国际能源及原材料市场的依赖程度不断加大,从目前来看,国际油价和工业原材料的价格也是在不断攀升,我国经济在能源领域比较棘手。我国的汽车保有量逐年增加,需要更多的燃油,所以节能减排是中国汽车产业需要考虑的关键,也值得国家重视。车架的轻量化能够减少整车质量,从而能使汽车达到节能减排的目的,节油了能源和资本,从而具有一定的现实意义和经

27、济意义。社会意义体现在:自从工业革命以来,世界工业发展飞速,能源开采量逐年增高,汽车工业发展尤为迅速,汽车保有量也呈递增趋势。有限的能源如何能用的更长久是值得人类和社会反思的意见事情,节油车型的普及功在当代,利在千秋。而通过这种节油车竞赛恰恰就能为节油车产品的问世提供有效的依据,使得能源的利用率提高,为人类社会的顺延提供了有效保证。车架的优化设计是使得汽车能够节能减排的主要手段之一,因此车架的优化设计的社会意义重大。1.6 HQJ-500型节油车车架研究的基本内容及技术路线1、设计主要内容及分析、校核:(1)进行设计赛车总体布局设计;(2)进行车架结构设计;(3)进行车架结构有限元优化设计与分

28、析;(4)进行车架结构模态分析。绘制设计总图和上述部分的结构装配图、零件图。2、技术路线分析题目,收集资料借鉴以往经验,确定设计方案HQJ-500节油车总体布局设计节油车车架结构设计用ANSYSY软件对其进行优化对车架进行结构模态分析完成装配图、零件图完成设计说明书NOYES第2章 HQJ-500型车结构设计与总体布局2.1 节油车车架选用材料HQJ-500型节油车车架所选用的材料是6061铝合金。6061铝合金的主要合金元素是镁和硅,并形成Mg2Si相。有时还添加少量的铜和锌,以提高合金的强度,而又不使其抗腐蚀性明显下降;导电材料中还有少量的铜,以抵消钛及铁对导电性的不良影响;锆或钛能细化晶

29、粒与控制再结晶组织;为了能改善可切削性能,可加入铅与铋。在Mg2Si固溶于铝中,使合金有人工时效硬化功能。6061铝合金中的主要合金元素为镁和硅,具有中等强度、;良好的抗腐蚀性、可焊接性,氧化效果较好。美铝6061-T651是6系合金的主要合金,是经热处理预拉伸工艺的高品质铝合金产品;美铝6061具有加工性能极佳、良好的抗腐蚀性、韧性高及加工后不变形、上色容易、氧化效果极佳等优良特点。主要用途:广泛应用于要求有一定强度和抗腐蚀性高的各种工业结构件,如制造卡车。塔式建筑、船舶、电车、铁道车辆。2.2 节油车车架的结构设计根据人机工程学,确定了人的腿的长度的精确范围,从而确定了置脚横梁到前桥横梁的

30、纵向距离;根据驾驶员的前脚掌的活动范围确定了置脚横梁到钱保险杠的纵向长度;根据驾驶员与臀部座椅的接触范围,确定了车架前桥横梁到座椅横梁前端的纵向距离;根据驾驶员的上身的长度(以及根据驾驶员驾驶姿势的修正)可以确定座椅各梁在纵向的相对长度;根据驾驶员横向的宽度可以确定座椅的梁的横向宽度;根据发动机的极限高度确定座椅立梁的极限高度;根据发动机长宽高的尺寸确定了车架座椅后纵梁距离发动机固定横梁的距离;根据发动机打孔位置来确定支撑发动机的两个固定横梁的相对位置;根据发动机的高度来确定高架辅助纵梁的最低极限位置;根据选用车轮的直径的大小和节能车大赛规定的最小离地间隙来确定后桥纵梁距离车架最下端的相对高度

31、;根据车轮半径确定车架后桥纵梁的长度;根据驾驶员的极限视野(水平方向或竖直方向)来确定前桥上横梁相对车架最下端的高度。2.3 节油车的总体布局现在市面上的汽车的车轮数一般都大于3,但是为了简化结构,提高传动效率,进一步减少车重,减少车速器等装置5。发动机的驱动齿轮直接通过链条和驱动车轮(后轮)上的从动齿轮相连并进行动力传递,所以本设计所设计的三个车架都是仅适用于前两轮后一轮的节油车型。根据人机工程学的要求,对车手的体型和坐姿定下整车的初步初步控制尺寸进行各项数据的测量,并在PRO/E中建模,确立了车架的宽度长度、车身高度等。车架的宽度一般能满足车手乘坐要求,并能安装排线(刹车线、油门线、电线)

32、,车身安装即可,尽量取小。这样,在保证车架用料少的同时,也利于车身设计的流线型。车身高度尽量低矮,一般可以取发动机竖直放置时的最高点,这个高度车手躺下时的视野一般是可以保证的。底盘高度要保证有尽量大的离地间隙,同时又不能使重心过高,以免高速转弯时翻车。轮距轴距不及考虑太多,但要满足大赛要求,轴距轮距的计算、前后载荷分配等是为了保证有足够的地面附着力。我们节能车驱动力还没有能大到可以超过地面附着力的程度。所以只要保证不干涉即可(驱动力的大小取决于发动机的改造,当发动机输出的转矩过大时才要考虑此因素)。三个车架的总布置尺寸:1、方案一 总长2997mm,总高1057 mm,车架最宽907mm,轴距

33、1861mm,轮距800mm ,采用后置发动机后轮驱动。转向操作方法为握把手动式,最大转向角20度,驾驶员采用半躺坐姿驾驶,视线角度上下为90度,左右为120度,接近角为8度。驾驶员选用体型较小的40kg重、身高在1550mm左右的女驾驶员。(图2.1)图2.1 方案一主、侧视图2、方案二 总长2997mm,总高1057mm ,车架最宽907mm, 轴距1861mm ,轮距800mm ,采用后置发动机后轮驱动。转向操作方法为握把手动式,最大转向角20度,驾驶员采用半躺坐姿驾驶,视线角度上下为90度,左右为120度,接近角为8度。驾驶员选用体型较小的40kg重、身高在1550mm左右的女驾驶员。

34、(图2.2)图2.2 方案二主、侧视图3、方案三 总长2710mm,总高1057 mm,车架最宽907mm,轴距1880mm ,轮距800mm ,采用后置发动机后轮驱动。转向操作方法为握把手动式,最大转向角20度,驾驶员采用半躺坐姿驾驶,视线角度上下为90度,左右为120度,接近角为8度。驾驶员选用体型较小的40kg重、身高在1550mm左右的女驾驶员。(图2.3)图2.3 方案三主、侧视图2.4 节油车车架整体质心位置的确定本设计需要对节油车的静态稳定性进行计算。节油车的静态稳定性分析,首先应该计算出整车的质心位置6。当总体布置完毕后既可以对该车的质心位置进行计算。计算时刻用计算方法来确定专

35、用车各总成的质量及其质心位置坐标,然后按照力矩平衡方程式,求出整车的质心位置。计算公式如下: (2.1) (2.2) (2.3) (2.4) 式中:第i个总成的质量,kg;第i个总成的质心到前轴中心的水平距离,m;第i个总成的质心距地面的距离,m;第i 总成的质心距该车纵向对称面的距离,m;整车质心距离地面的高度,m;a 整车质心距前轴中心的水平距离,m;b 整车质心距后轴中心的水平距离,m;c 整车质心距该个纵向对称面的距离,m;L 轴距,m。1、方案一的质心求解过程 533.6 mm 36.1mm291.8mm1327.4mm图2.4 方案一主视图图2.5 方案一左视图2、方案二的质心求解

36、过程图2.6 方案二主视图图2.7 方案二左视图 518.2mm 35.8mm 268.2mm 1342.8mm3、方案三的质心求解过程图2.8 方案三主视图图2.9 方案三左视图 556.3mm49.3mm 311.3mm 1323.7mm2.5 本章小结本章先对三种不同结构的车架分别做了总体布置,确定了车的总长、总宽、轴距、轮距、接近角,以及对驾驶员的要求和前方视角等,然后又对三种不同布置的节油车进一步确定质心的位置。通过分析比较可以初步看出方案二车架质量最轻,重心高度最低,c值最小。进而可知方案二行驶的稳定性相对较好,车架成本相对较低。 第3章 基于PRO/E的模型的构建3.1 Pro/

37、E软件简介1985年,PTC公司成立于美国波士顿,开始参数化建模软件的研究。1988年,V1.0的Pro/ENGINEER诞生了。经过10余年的发展,Pro/ENGINEER已经成为三维建模软件的领头羊。目前已经发布了Pro/ENGINEER2000i2。PTC的系列软件包括了在工业设计和机械设计等方面的多项功能,还包括对大型装配体的管理、功能仿真、制造、产品数据管理等等。Pro/ENGINEER还提供了目前所能达到的最全面、集成最紧密的产品开发环境。下面就Pro/ENGINEER的特点及主要模块进行简单的介绍。主要特性 全相关性:Pro/ENGINEER的所有模块都是全相关的。这就意味着在产

38、品开发过程中某一处进行的修改,能够扩展到整个设计中,同时自动更新所有的工程文档,包括装配体、设计图纸,以及制造数据。全相关性鼓励在开发周期的任一点进行修改,却没有任何损失,并使并行工程成为可能,所以能够使开发后期的一些功能提前发挥其作用。基于特征的参数化造型:Pro/ENGINEER使用用户熟悉的特征作为产品几何模型的构造要素。这些特征是一些普通的机械对象,并且可以按预先设置很容易的进行修改。例如:设计特征有弧、圆角、倒角等等,它们对工程人员来说是很熟悉的,因而易于使用。 装配、加工、制造以及其它学科都使用这些领域独特的特征。通过给这些特征设置参数(不但包括几何尺寸,还包括非几何属性),然后修

39、改参数很容易的进行多次设计叠代,实现产品开发。数据管理:加速投放市场,需要在较短的时间内开发更多的产品。为了实现这种效率,必须允许多个学科的工程师同时对同一产品进行开发。数据管理模块的开发研制,正是专门用于管理并行工程中同时进行的各项工作,由于使用了Pro/ENGINEER独特的全相关性功能,因而使之成为可能。装配管理:Pro/ENGINEER的基本结构能够使您利用一些直观的命令,例如“啮合”、“插入”、“对齐”等很容易的把零件装配起来,同时保持设计意图。高级的功能支持大型复杂装配体的构造和管理,这些装配体中零件的数量不受限制。易于使用:菜单以直观的方式联级出现,提供了逻辑选项和预先选取的最普

40、通选项,同时提供了简短的菜单描述和完整的在线帮助,这种形式使得容易使用7。3.2 三维模型的构建利用PRO/E软件构建三个车架的模型,主要应用了拉伸操作、构建基准面等基本操作。3.2.1 节油车车架方案一模型1、建模流程如下:(1)方案一手绘三维图。图3.1 方案一手绘草图(2)用PRO/E建模,用多步拉伸命令,创建车架底板模型。图3.2 车架一模型创建过程截图(3)用PRO/E建模,用多步拉伸命令,进一步创建车架前桥和前板斜拉梁。图3.3 车架一模型创建过程截图(4)用PRO/E建模,用多步拉伸命令,进一步创建车架靠椅梁及后桥立梁。图3.4 车架一模型创建过程截图(5)车架方案一建模完成。图

41、3.5 车架一模型创建过程截图2、车架模型特点为了有效加强驾驶员后部、后桥前部这一部分纵梁的刚度,在上部增加了辅助纵梁,但为了使发动机便于布置,需要使得该辅助纵梁和主纵梁的高度大于450mm。(为了便于施加约束和载荷,前桥和发动机固定座的相应位置出制作出了薄凸台。)以下是反映该模型特点的截图:(1)车架前底版拉伸出薄凸台。图3.6 方便加载建模过程截图(2)斜拉下的前底板面创建凸台。图3.7 方便加载建模过程截图(3)座椅下底板面创建凸台。图3.8 方便加载建模过程截图(4)前桥制造为方便施加约束的凸台。图3.9 方便加约束建模过程截图(5)固定发动机的位置制造凸台。图3.10方便加载建模过程

42、截图3.2.2 节油车车架方案二模型1、建模流程如下:(1)方案二手绘三维图。图3.11 方案二手绘草图(2)用PRO/E建模,用多步拉伸命令,构建模型过程截图。图3.12车架二模型创建过程截图(3)车架方案一建模完成。图3.13 车架二模型创建过程截图2、车架模型特点中间部分采用双纵梁结构,为加强后桥的强度,增设了辅助斜梁,从而加强车架车架整体的刚度和强度。而且比方案一节省了一定的材料,和减少了一定的车架质量。进一步实现了整车的轻量化。(为了便于施加约束和载荷,前桥和发动机固定座的相应位置出制作出了凸台。)以下为与该特点相对应的截图:(1)模型中增设辅助纵梁,从而减少危险截面应力。图3.14

43、 辅助纵梁截图(2)模型中增设后桥辅助斜梁,从而减少危险截面应力。图3.15 后桥辅助斜梁截图(3)座椅更加符合人体的尺寸。图3.16 座椅梁截图3.2.3 节油车车架方案三模型1、建模流程如下:(1)手绘二维草图。图3.17 二维手绘草图(2)车架三维模型图。图3.18 方案三车架建模过程截图2、车架模型特点座椅和前桥的局部下沉至车架纵梁下端。一片期刊论文中将这种类型的车架命名为下沉式车架,由于本车架的独特之处(只有一部分下沉),所以将之命名为“半下沉式车架”。 (为了便于施加约束和载荷,前桥和发动机固定座的相应位置出制作出了凸台。)以下是方案三车架的几个具有特色的截图:(1)为配合下沉的座

44、椅,前桥前部截图。图3.19 前桥前部截图(2)下沉式车架的座椅部分截图。图3.20 座椅部分截图(3)发动机固定部分及后桥部分结构截图。图3.21 后桥部分截图 (4)为方便在踏板梁处加载,构建两处薄凸台。图3.22 踏板处为方便加载的凸台截图3.3 本章小结本章对PRO/E软件做出了简单的介绍,对与三种不同的方案相对应的车架构建了模型,为接下来应用ANSYS软件进行有限元分析做了很好的铺垫。并且以截图的形式对三种车架进行了结构方面和后续加载的位置方面的对比。第4章 基于有限元法的分析及优化设计ANSYS软件具有强大而广泛的分析功能,主要包扩几何模型的建立或导入、自动网格划分、求解、后处理、

45、优化设计等许多功能及实用工具。本章主要是利用它对HQJ-500型节油车车架进行分析。4.1 有限元分析的简介4.1.1 有限元法及优化过程简介1、有限元法简介有限元法是最近二三十年发展起来的一种有效的通用计算方法,是借助于高速数字电子计算机解决问题的近似计算方法。它既包括有数学理论,又包括有程序设计技巧。它运用离散的概念使整个问题由整体连续到分段连续;整体解析转化为分段解析,从而使数值法与解析法互相结合,互相渗透,形成一种新的数值计算方法。也就是论把整个求算域离散成为有限个分段(子域),而每一分段内运用变分法,即利用与原问题中微分方程相等价的变分原理来进行推导,从而恢原问题的微分方程组退化到代

46、数联立方程纸使问题归结为解线性方程组,出此得到数值解答。这种方法首先在固体力学范畴,而后在工程技术各个领域令得到了广泛的应用。众所周知,从数学角度来看,一个工程问题往往可以用一个偏微分方程来描述,但是常常很难求得精确的解析解16。20世纪50年代开始,随着电子计算机的应用,有限元法作为一种数值分析工具,借助于高速电子计算机的配合,使得以前这类难以处理的工程技术问题都可能获得一个近似的计算机解。因此,有限无法引起了工程师和科学家的极大兴趣。现在,它已经被公认是一种有效的数值计算方法,被广泛应用于固体力学、流体力学、热传导以及电磁学等连续介质或场问题这类工程技术领域。在机械设计中,从齿轮、轴、轴承等通用零、部件到机床、汽车、飞机等复杂结构件的应力和变形分析(包括热应力和热变形分析),采用有限无法计算,都可以获得一个足够精确的近似解来满足工程上的要求。有限元法分析的思想可以追溯到更早一些时候,1943年RCourant首先提出离散化概念将一个原来是连续的整体剖分(离散)成为有限个分段连续单元的组合,并第一次尝试应用三角形单元的分片连续函数来求

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服