收藏 分销(赏)

福田欧曼etx驱动桥的设计.doc

上传人:快乐****生活 文档编号:2654297 上传时间:2024-06-03 格式:DOC 页数:32 大小:1.05MB
下载 相关 举报
福田欧曼etx驱动桥的设计.doc_第1页
第1页 / 共32页
福田欧曼etx驱动桥的设计.doc_第2页
第2页 / 共32页
福田欧曼etx驱动桥的设计.doc_第3页
第3页 / 共32页
福田欧曼etx驱动桥的设计.doc_第4页
第4页 / 共32页
福田欧曼etx驱动桥的设计.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、第1章 绪 论1.1 选题背景目的及意义从目前我国载货车销售的结构上看,由于国家基础设施建设以及市政建设的投入日益加大,重型自卸车的销量猛增;又由于货物运输向专用化、大型化发展,传统意义的重型载货车较之上年有不同程度的下挫。 对于国内卡车市场而言,虽然最近群雄并起,各种资本纷纷进入,竞争异常残酷激烈,但目前大的格局基本已定:解放、东风、重汽、陕汽、欧曼将跻身第一集团;上汽依维柯红岩、江淮、北奔、华菱做为第二集团,将向第一集团的地位不断发起冲击;而广汽、集瑞、长安、大运等后起之秀或许会后来居上、有所作为,有待市场考验。自卸车市场,占据较大数量的是东风EQ3208系列,占市场的70多。该系列采用康

2、 明斯180至210马力发动机,超大的车厢以及经济型的配置使得该车在自卸车市场具有绝对的优势。 牵引车市场受追捧的是陕汽、重汽的S35和S29,良好的性价比以及大马力、大吨位的特点使得该系列产品拥有极佳的口碑。260至360马力发动机、富勒变速箱、斯太尔加强桥使该车的配置光彩夺目。 货运车(包括仓栅车)竞争极为激烈,可用群雄纷争来形容,一汽的CA1200系列、东风的EQ1208系列、红岩的CQ19系列等都是畅销产品。重型专用车批量小、难度高,一直不为国内企业所重视,高档专用车为进口品牌所垄断,沃尔沃、曼等品牌参与国内竞争主要以专用车为主。 国外卡车的发展趋势 各国商用车制造厂家目前正采用令人惊

3、叹的高新技术来最大限度地保障安全,提高效率。重型车的发展趋势对安全、可靠、舒适的人性化设计等方面提出更高的要求。 在安全性方面,国际潮流是安装制动防抱死系统(ABS)、翻车警告系统、电子控制制动系统(EBS)、红外线夜视系统以及其它的驾驶室安全性措施。在欧洲,多数重型车驾驶室都要经受严格的加载、撞击与扭振试验,完全合格后方可投入批量生产。其目的是在发生翻车事故后,驾驶室不会被压扁,保证驾驶员的生存空间,车门不会自行打开,人员不会抛出车外。在舒适性方面,现在的商用车乘坐舒适性已接近轿车的水平。主要表现为驾驶室空间比轿车还要宽敞许多,各种设施一应俱全。特别是长途行驶的牵引车,不仅有音响、冷暖空调和

4、通讯设备,而且还有卫星导航、冷热饮柜、电视、衣柜等装备;驾驶室的支点装有弹性缓冲装置,驾驶员座椅下方有空气弹簧缓冲支承,保证了驾驶员乘坐舒适平稳。 在环保性方面,柴油发动机技术的提高,为实现柴油机降低废气排放提供了基本保证。同时新技术的应用又可以帮助清洁柴油,减少废气排放。如催化微粒过滤器,它可以清除排气中90至95的烟尘等。 在可靠性和耐久性方面,国外先进企业中重型载货汽车的保修期大多在60万公里,实际上都能保证80万至100万公里无大修,而国内保修期大多在10万公里左右。国外重型载货汽车只要在正常情况下使用就基本不会出现故障,而国内的车初期故障率则一直较高。我国的维修保养费用在汽车运输成本

5、中的比重远高于国外水平。福田2006年3月推出的重卡新产品欧系顶级欧曼ETX,采用全钢结构一次性冲压成型的高顶宽体车身,其中牵引车、载货车等车身采用四点全浮式减震装置,多向可调节减震座椅。可选装GPS定位系统、导航系统、车载冰箱、车载电话、DVD以及电动天窗等配置。车身的迎风面积为6.98m2(一般重卡为7.48m2),风阻系数较低,可节油12%18%。欧曼ETX秉承了欧曼重卡一贯的高大威猛车身造型,彰显了欧洲重卡的阳刚之气。驾驶室符合欧洲EEC法规标准的防正面、侧面碰撞、顶压以及前端钻进的全面安全法规标准,碰撞安全性大大提高。在实现安全驾驶的同时,也充分考虑到了现代社会对于环保的要求。欧曼E

6、TX共分两个系列产品:洲际版和豪华版。洲际版采用欧标准的美国康明斯ISM发动机(Mil)。该机在低转速800x/min时可提供8801250Nm的起步扭矩,而且可提供28%45%的扭矩储备。豪华版主要配装潍柴动力的06款发动机。ETX配装美国伊顿S9全同步器变速器,485单级减速冲焊驱动桥与13t双级减速桥相比,该桥具有传动效率高、节油、承载能力强等优点。ETX的离合器为430大摩片螺旋弹簧式。该车所用的WEVB发动机制动技术,可使制动器的使用寿命提高45%55%。驾驶室内部的轿车化内饰,豪华优雅、高档气派,符合了现代人的审美情趣。创新设计的轿车化仪表台、采用了集成化控制。采用奔驰技术的单杆变

7、速操纵系统,使驾驶员长途驾驶操纵更轻便、更灵活。四点全浮悬置、气囊减震的座椅,整体式侧裙板、后轮罩等设置都大幅度提高了整车的舒适性能。重卡轻量化作为目前市场的主流,不仅是企业技术与研发的核心,更是消费者购买的主选。一批掌握了轻量化技术的重卡企业,已经在2010年的市场竞争中突出重围、脱颖而出,成为了用户的宠儿。 欧曼凭借在轻量化方面的领先技术和丰富的产品线,其轻量化牵引车集轻量化、安全可靠、燃油经济性于一身,成为了大家关注的焦点。为满足不同类型用户的需求,欧曼将产品细分为高速型、标准型和重载型。丰富的产品线,为欧曼6系牵引车的轻量化设计提供了基础,凭借着稳定而卓越的技术,欧曼6系轻量化牵引车为

8、用户带来了更多的额外收益,赢得了越来越多的消费者信任。2010年11月13日,由国家知识产权局和世界知识产权组织主办的第十二届中国专利奖评选活动中,福田欧曼ETX重型卡车的外观设计专利荣获中国交通类外观设计唯一金奖,该奖项为中国专利奖评选活动中首次设立的奖项,也是目前国内外观设计专利领域的最高奖项。福田欧曼ETX的上市,不但代表了我国重卡不断进步的技术水平,而且正在引领着我国卡车技术的发展趋势。1.2设计的基本内容、拟解决的主要问题1、设计车型欧曼3系主要参数如表1.1 表1.1 欧曼3系主要参数轮胎 9.00R20发动机最大功率118/2600Pemax kW/np (r/min)发动机最大

9、转矩255/2000Temax Nm/nr (r/min)装载质量6000kg汽车满载总质量12000kg满载时轴荷分布前轴3820 后轴8280kg最大车速90km/h轮距(双胎中心线)1900mm2、基本内容(1) 研究驱动桥组成、结构、原理;(2) 主减速器的结构设计,基本参数选择及设计计算;(3) 差速器齿轮的基本参数的选择、尺寸及强度计算;(4) 驱动半轴的结构设计及强度计算;(5) 驱动桥壳的结构设计及受力分析与强度计算。3、拟解决的主要问题(1)驱动桥结构形式及布置方案的确定。(2)驱动桥零部件尺寸参数确定及校核。(3)完成驱动桥装配图和主要部分零件图。第2章 驱动桥的总体方案确

10、定2.1 总体方案论证2.1.1 非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地

11、间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小

12、、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。2.1.2 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其

13、外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。由于非断

14、开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相关货车的设计,最后本课题选用非断开式驱动桥。2.2 驱动桥结构组成在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及桥壳等部件如图2.1所示。1 2 3 4 5 6 7 8 9 101.半轴2.圆锥滚子轴承3.支承螺栓4.主减速器从动锥齿轮5.油封6.主减速器主动锥齿轮7.弹簧座8.垫圈9.轮毂10.调整螺母图2.1 驱动桥2.3 驱动桥设计要求1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。2、外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。3、齿轮及其他传动件工作平稳,

15、噪声小。4、在各种载荷和转速工况下有较高的传动效率。5、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。6、与悬架导向机构运动协调。7、结构简单,加工工艺性好,制造容易,维修,调整方便。2.4 主减速器结构方案的确定2.4.1主减速比的计算主减速比对主减速器的结构形式、轮廓尺寸、质量大小影响很大。当变速器处于最高档位时对汽车的动力性和燃料经济性都有直接影响。的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率平衡图来计算对汽车动力性的影响。通过

16、优化设计,对发动机与传动系参数作最佳匹配的方法来选择值,可是汽车获得最佳的动力性和燃料经济性。对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率及其转速的情况下,所选择的值应能保证这些汽车有尽可能高的最高车速。这时值应按下式来确定5:=0.377 (2.1)车轮的滚动半径,=0.414 m变速器最高档传动比1.0(为直接档)。 最大功率转速2600r/min最大车速90km/h对于与其他汽车来说,为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大10%25%,即按下式选择:=(0.3770.472) (2.2)经计算初步确定=5.14按上式求得的应与同类汽车

17、的主减速比相比较,并考虑到主、从动主减速齿轮可能的齿数对予以校正并最后确定。2.4.2主减速器的齿轮类型按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 在现代货车车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。螺旋锥齿轮主、从动齿轮轴线交于一点,交角都采用90度。螺旋锥齿轮的重合度大,啮合过程是由点到线,

18、因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。双曲面齿轮主、从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有:1、尺寸相同时,双曲面齿轮有更大的传动比。2、传动比一定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。3、当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙。4、工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。双曲面齿轮传动有如下缺点:1、长方向的纵向滑动使摩擦

19、损失增加,降低了传动效率。2、齿面间有大的压力和摩擦功,使齿轮抗啮合能力降低。3、双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。4、双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。螺旋锥齿轮传动的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时捏合,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。本次设计采用螺旋锥齿轮。如图2.2。图2.2 螺旋锥齿轮传动2.4.3主减速器的减速形式主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减

20、速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比io的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。通常单极减速器用于主减速比io7.6的各种中小型汽车上 (a) 单级主减速器 (b) 双级主减速器图2.2主减速器如图2.2(a)所示,单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的基本型,在货车车上占有重要地位。目前货车车发动机向低速大扭矩发展的趋势使得驱动桥的传动比向小速比发展;随着公路状况的改善,特别是高速公路的迅猛发展,许多货车使用条件对汽车通

21、过性的要求降低,因此,产品不必像过去一样,采用复杂的结构提高其的通过性;与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加。如图2.2(b)所示,与单级主减速器相比,由于双级主减速器由两级齿轮减速组成,使其结构复杂、质量加大;主减速器的齿轮及轴承数量的增多和材料消耗及加工的工时增加,制造成本也显著增加,只有在主减速比较大(7.616时,取=03.2主减速器齿轮参数的选择足了强度校核。第5章 半轴设计5.1 概述驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器的半轴齿轮传给驱动车轮。在一般的非断开式驱动桥上,驱动车轮的传动装置就是半

22、轴,半轴将差速器的半轴齿轮与车轮的轮毂联接起来,半轴的形式主要取决半轴的支承形式:普通非断开式驱动桥的半轴,根据其外端支承的形式或受力状况不同可分为半浮式,3/4浮式和全浮式,在此由于是载重汽车,采用全浮式结构。设计半轴的主要尺寸是其直径,在设计时首先可根据对使用条件和载荷工况相同或相近的同类汽车同形式半轴的分析比较,大致选定从整个驱动桥的布局来看比较合适的半轴半径,然后对它进行强度校核。5.2 半轴的设计与计算5.2.1全浮式半轴的计算载荷的确定计算时首先应合理地确定作用在半轴上的载荷,应考虑到以下三种可能的载荷工况:(1)纵向力(驱动力或制动力)最大时,其最大值为,附着系数在计算时取0.8

23、,没有侧向力作用;(2)侧向力最大时,其最大值为(发生于汽车侧滑时),侧滑时轮胎与地面的侧向附着系数在计算时取1.0,没有纵向力作用;(3)垂向力最大时(发生在汽车以可能的高速通过不平路面时),其值为,其中为车轮对地面的垂直载荷,为动载荷系数,这时不考虑纵向力和侧向力的作用。 由于车轮承受的纵向力,侧向力值的大小受车轮与地面最大附着力的限制,即有 -故纵向力最大时不会有侧向力作用,而侧向力最大时也不会有纵向力作用。全浮式半轴只承受转矩,只计算在上述第一种工况下转矩,如图5.1为全浮半轴支撑示意图。图5.1 全浮式半轴支承示意图其计算可按求得,其中,的计算,可根据最大附着力和发动机最大转矩计算,

24、并取两者中的较小者。若按最大附着力计算,即 (5.1)式中: 轮胎与地面的附着系数取0.8; 汽车加速或减速时的质量转移系数,可取1.21.4在此取1.3。根据上式=42194.8N若按发动机最大转矩计算,即 (5.2)式中: 差速器的转矩分配系数,对于普通圆锥行星齿轮差速器取0.6; 发动机最大转矩,255 Nm; 汽车传动效率,计算时可取0.9; 传动系最低挡传动比=5.146.45=33.153 轮胎的滚动半径,0.414m根据上式10976.1N所以取10976.1N 按发动机最大转矩计算=4544.1 Nm5.2.2 全浮半轴杆部直径的初选 设计时,全浮式半轴杆部直径的初步选择可按下

25、式进行: 取d=33mm (5.3)式中:d半轴杆部直径mm; T半轴的计算转矩,4544.1; 半轴转矩许用应力,MPa。因半轴材料取40Cr,为784MPa左右,考虑安全系数在1.31.6之间,可取=490588MPa。 5.2.3全浮半轴强度计算半轴的扭转应力可由下式计算:= (5.4)式中:半轴扭转应力,MPa; T半轴的计算转矩4544.1; d半轴杆部直径33mm; 半轴的扭转许用应力,取=490588MPa。=560.61,强度满足要求。半轴的最大扭转角为 (5.5)式中:T半轴承受的最大转矩.4544.1; 半轴长度1200mm; G材料的剪切弹性模量8.410N/mm; J半

26、轴横截面的极惯性矩,=147248.83mm。经计算最大扭转角=13.7 扭转角宜选为615满足条件。5.3 本章小结首先本章对半轴的功用进行了说明,并且在纵向力最大时确定了半轴的计算载荷。对半轴进行了具体的设计计算,确定了半轴的各部分尺寸,并进行了校核。最后对材料和热处理做了加以说明。第6章 驱动桥桥壳的设计6.1 概述驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮作用在驱动车轮上的牵引力,制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥壳既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置(如半轴)的外壳。在汽车

27、行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。6.2 桥壳的结构型式桥壳的结构型式大致分为可分式a)可分式桥壳可分式桥壳的整个桥壳由一个垂直接合面分为左右两部分,每一部分均由一个铸件壳体和一个压入其外端的半轴套管组成。半轴套管与壳体用铆钉联接。在装配主减速器及差速器后左右两半桥壳是通过在中

28、央接合面处的一圈螺栓联成一个整体。其特点是桥壳制造工艺简单、主减速器轴承支承刚度好。但对主减速器的装配、调整及维修都很不方便,桥壳的强度和刚度也比较低。过去这种所谓两段可分式桥壳见于轻型汽车,由于上述缺点现已很少采用。b)整体式桥壳整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一整体的空心粱,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好以后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。使主减速器和差速器的拆装、调整、维修、保养等都十分方便。整体式桥壳按其制造工艺的不同又可分为铸造整体式、钢板冲压焊接式和钢管扩张

29、成形式三种。6.3 桥壳的受力分析及强度计算我国通常推荐:计算时将桥壳复杂的受力状况简化成三种典型的计算工况(与前述半轴强度计算的三种载荷工况相同)。当牵引力或制动力最大时,桥壳钢板弹簧座处危险端面的弯曲应力和扭转应力为: (6.1) (6.2)式中地面对车轮垂直反力在桥壳板簧座处危险端面引起的垂直平面内的弯矩,; 桥壳板簧座到车轮面的距离;牵引力或制动力(一侧车轮上的)在水平平面内引起的弯矩,;牵引或制动时,上述危险断面所受的转矩,;、分别为桥壳危险断面垂直平面和水平面弯曲的抗弯截面系数;危险断面的抗扭截面系数。将数据带入式(6-1)、(6-2)得: =400 N/mm2 =250 N/mm

30、2 桥壳许用弯曲应力为300-500N/mm2,许用扭转应力为150-400N/mm2。可锻造桥壳取较小值,钢板冲压焊接桥壳取最大值。6.4 本章小结 本章选择了我所设计的驱动桥桥壳,并进行了桥壳的受力分析和强度计算。对静弯曲应力下,不同路面冲击载荷作用下和汽车以最大牵引力行驶时及汽车紧急制动时的四种情况下桥壳受力和强度做了计算。最后指出了这种桥壳设计的弊端,提出利用有限元分析法可进一步完善设计。结 论本毕业设计完成的是福田欧曼ETX驱动桥的设计,国内驱动桥制造企业主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题。国外主要采用模块化技术和模态分析进行驱动桥的设计分析

31、,其中计算机辅助设计应用十分广泛,本设计根据传统驱动桥设计方法,并结合现代设计方法,确定了驱动桥的总体设计方案,采用非断开式驱动桥,单级主减速器,圆锥行星齿轮差速器和全浮式半轴,在计算中,先后对主减速器,差速器,半轴以及驱动桥壳的结构进行了设计和强度校核,并运用AutoCAD软件绘制出驱动桥装配图及主要零部件图。设计中采用的非断开式驱动桥,其结构简单、工作可靠,可以广泛用在轻型货车上。采用的单级主减速器,具有结构简单、体积及质量小且制造成本低等优点,广泛用于主减速比小于7.6的各种中、小型汽车。采用的圆锥行星齿轮差速器和全浮式半轴,结构简单,工作平稳可靠,被大多数汽车厂所生产,能够减少制造成本

32、。本设计结构合理,符合汽车行驶过程中的环境要求,具有很好的动力性和经济性,驱动桥总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。参考文献1臧杰汽车构造M北京:机械工业出版社,2005.2刘惟信.汽车车桥设计M.北京:清华大学出版社,2004.3王望予.汽车设计M.第3版.北京:机械工业出版社,2000.4汽车工程手册编辑委员会.汽车工程手册.设计篇.北京:人民交通出版社,2001.5汽车工程手册编辑委员会.汽车工程手册.制造篇.北京:人民交通出版社,2001.6余志生.汽车理论M.第3 版.北京:机械工业出版社,20

33、00.7曾范量.差速器的工作原理与使用J. 汽车维修,2005.8张洪欣.汽车底盘设计M.北京:机械工业出版社,1998.9霍梦帆.汽车双极主速器优化设计D. 北京邮电大学机械设计与理论系硕士学位论文. 北京:北京邮电大学.2000.10陈宏钧.实用机械加工工艺手册M.北京:机械工业出版社,2003.11 王聪兴,冯茂林. 现代设计方法在驱动桥设计中的应用J.公路与汽运,2004.12龚溎义.机械设计课程设计图册M.北京:高等教育出版社,1989.13韩晓娟.机械设计课程设计M.北京:机械工业出版社,2000.14梁德本,叶玉驹.机械制图手册M.第3版.北京:机械工业出版社,2002.15成大先机械设计手册M北京:化学工业出版社,2004,1.16雷君. 重型汽车驱动桥的技术特点与发展趋势J. 汽车研究与开发,2004.17高维山,张思浦. 驱动桥M. 北京:人民交通出版社,1990.18张学孟. 汽车齿轮设计(文集)M. 北京:北京齿轮总厂科协技协,1995.1

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服