1、数字推理行测数字推理全方法:(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。如:2, 5, 13, 35, 97 ( )-A2+1 3 9 27 81=B又如:1,1,3,15,323,( ) -数跳很大,考虑是次方和乘法。此题-(A+B)2-1=c再如:1 , 2 ,3 ,35 ()-(ab) 2-1=c0.4 1.6 8 56 560 ( )-4 5 7 10倍,倍数成二级等差A、2240 B、3136 C、4480 D、784009国考真题14 20 54 76 ( )A104 B.116 C.126 D1449+525-549+5(2)数差(数跳不大,
2、考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大, 但是做差没规律怎么办?一般三种可以尝试的办法(1) 隔项相加、相减(2) 递推数列(3) 自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09江苏真题1,1,3,5,11,( )A8 B13 C21 D32满足C-A=2 4 8 16-3,7,14,15,19,29,() A 35 B 36 C 40 D 42-满足A+C=11 22 33 44 5521,37,42,45,62,() A 57 B 69 C 74 D 8721+37=4237+42=4542+45=6245+62=57(3)倍数问题(二)三位数的数字推理的
3、思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,( )252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题153, 179, 227, 321, 533, ( )A.789 B.919C.1079 D.1229150+3170+9200+27.左边等差,右边等比(三)多项项数的数字推理多项项数的数推比如:5,24,6,20,( ),15,10,( )上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。这种多项数列的解题思路一般有三种1、分组,2个一组或者3个一组(
4、有时间甚至是4个一组)2、隔项(分奇数项和偶数项,或者是质数列项和合数列项)3、考虑是不是和数列及A、B、C之间的关系大家可以想想,如果数字那么多项。只是简单的做差、倍数等等问题,他会出那么多项吗?例题1(06湖南)、 5,24,6,20,( ),15,10,( )A7,15 B8,12 C9,12 D10,16-此题数项比较多,考虑隔项发现没规律!只要有点数字敏感度就很容易发现规律:分组即:524=620=X15=10Y所以X=8 Y=12例题2(07黑龙江)11,12,12,18,13,28,( ),42,15,( )A15,55 B14,60 C14,55 D15,60此题比较简单奇数项
5、是11,12,13,14,15(等差1)偶数项是12,18,28,42,60(二级等差4)克隆题:07上海、6,8,10,11,14,14,( )-隔项06湖南、40,3,35,6,30,9,( ),12,20,( )-隔项例题3(和数列)(07江西)、2,3,7,12,22,41,75,( )A128 B130 C138 D140-做差:1,4,5,10,19,34-该数列为一个和数列,即:1+4+5=104+5+10=195+10+19=34A+B+C=D克隆题:05中央、0,1,1,2,4,7,13,( )-A+B+C=D06广东、-8,15,39,65,94,128,170,( )-二
6、次做差之后满足A+B=C真题3、34, -6, 14, 4, 9, 13/2,( )A、22/3 B、25/3 C、27/4 D、31/4-项数多考虑分组、各项、和数列。满足(A+B)/2=C(四)次方及次方的倒置问题次方问题:(09江苏真题)0,7,26,63,124,( )A125 B215 C216 D211 2 3 4 5的立方- +1次方的倒置每个题的数字的变化趋势都是,由小到大,再由大到小!(一般都是次方问题)我个人习惯叫它“次方的倒置”。这种题目还是有突破口的:即小数字的大次方到大数字的小次方如: 34-43 小-大-小-小(09江苏)11,81,343,625,243,( )A
7、1000 B125 C3 D1首先分析,数字的变化趋势是小-大-小,而且很容易发现都是些次方数1119273543516=120,21,33,-2,()A.0 B.5 C.9 D.11-24+433-652+871-9110+10=118,0,0,2,3/2,( )A、5/4 B、3/7 C、4/9 D、3-这个题有说的必要,数字变化趋势:大-小-大。而且出现了分数从整数到分数,一般都是2种可能性(除法运算和负次方)-1(-2)30(-1)210121032(-1)43-2=4/93 30 29 12 ( )A 92 B 7 C 8 D10-14+233+352+471+590+6=7(五)阶
8、乘数列及连续出现两个0的情况大家先记下阶乘数列1,1,2,6,24,120,720照顾下文科生,“!”为阶乘运算符号。规定0!=1 N!=N*(N-1)*(N-2)*.*10,-1,-1,2,19,() A 65 B 84 C 101 D 114解法一:分别加上:1,2,3,4,5,6得到:1,1,2,6,24,120 *1 *2 *3 *4 *5120-6=114解法二:0!-11!-22!-33!-44!-55!-6=1140,0, 1,5,23,119-全部+1得到一个新数列1 1 2 6 24 120满足阶乘数列0,0,3,20,115A 、710 B、712 C、714 D、716-
9、分别+1 2 3 4 5后变成一个新的数列1,2,6,,24,120这个明显是一个阶乘数列连续出现两个0的情况,一般有两种常见的方法1、 全部+12、 分别+1 2 3 4 50,0,1,4,()A.10 B.11 C.12 D.13-分别+1 2 3 4 51 2 4 X+5这个是一个等比数列(六)题目中有分数和整数的思路(1)将分数看成是负次方,其实就是负次方的问题(最常见)如:1,32,81,64,25,6,1,1/8-43、52、61、70、8-1、 此题如果熟悉了,1/8=8-1 6=61此题就迎刃而解!又如288 10 0 -1/8 -1/18 ( )A、-3/64 B.-3/32
10、 C.-3/25 D.-3/162122=2881101=10090=0-18-1=-1/8-26-2=-2/36=-1/18-34-3=-3/64-先从分数和10入手,题目就好解了(2)考虑是A+B)/N或者A+C)/2。 N最常见的是取值2(即是除法运算如: 34, -6, 14, 4, 9, 13/2,( )A、22/3 B、25/3 C、27/4 D、31/4(A+B)/2=C1, 9, 35, 91, 189, ( )A.301 B.321C.341 D.361比如一个简单的数字给你,你能想到怎么去用?25我们都知道25=52 25=16+9=42+32 25=27-2又比如16我们
11、怎么用?这个要结合具体的题目了16=24=4217=8+9=23+3291=13*7(等于两个质数相乘)这些简单的分解数字和认识数字是乘法分解的基础09国考真题为例1, 9, 35, 91, 189, ( )A.301 B.321C.341 D.36111、33、57、713(因为91这个数字太特殊了,一看到就要有这种思维)921例题:【1】7,9,-1,5,( ) A、4;B、2;C、-1;D、-3分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比 【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:
12、选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5 【3】1,2,5,29,( )A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866 【4】2,12,30,( ) A、50;B、65;C、75;D、56;分析:选D,12=2; 34=12; 56=30; 78=( )=56 【5】2,1,2/3,1/2,( ) A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5, 【6
13、】 4,2,2,3,6,( ) A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.56=15 【7】1,7,8,57,( )A、123;B、122;C、121;D、120;分析:选C,12+7=8; 72+8=57; 82+57=121;【8】 4,12,8,10,( )A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9【9】1/2,1,1,( ),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成 1/2,
14、3/3,5/5 ( ),9/11,11/13这下就看出来了只能 是(7/7)注意分母是质数列,分子是奇数列。 【10】95,88,71,61,50,( ) A、40;B、39;C、38;D、37; 分析:选A,思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。思路二:95 - 9 - 5 = 81;88 - 8 - 8 = 72;71 - 7 - 1 = 63;61 - 6 - 1 = 54;50 - 5 - 0 = 45;40 - 4 - 0 = 36 ,构成等差数列。【11】2,6,13,39,15,45,23,( )A. 46;B. 66;C. 68;D.
15、 69;分析:选D,数字2个一组,后一个数是前一个数的3倍 【12】1,3,3,5,7,9,13,15( ),( ) A:19,21;B:19,23;C:21,23;D:27,30;分析:选C,1,3,3,5,7,9,13,15(21),( 30 )=奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=作差2、4、6、8等差数列,偶数项3、5、9、15、23=作差2、4、6、8等差数列【13】1,2,8,28,( )A.72;B.100;C.64;D.56;分析:选B, 12+23=8;22+83=28;82+283=100【14】0,4,18,( ),
16、100A.48;B.58; C.50;D.38;分析: A,思路一:0、4、18、48、100=作差=4、14、30、52=作差=10、16、22等差数列;思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100;思路三:01=0;14=4;29=18;316=48;425=100;思路四:10=0;22=4;36=18;412=48;520=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,思路五:0=120;4=221;18=322;( )=X2Y;100=524所以( )=423【15】23,89,43,2,( )A.3;B.2
17、39;C.259;D.269;分析:选A, 原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A【16】1,1, 2, 2, 3, 4, 3, 5, ( ) 分析:思路一:1,(1,2),2,(3,4),3,(5,6)=分1、2、3和(1,2),(3,4),(5,6)两组。思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=1,2,3;1,3,5;2,4,6=三组都是等差【17】1,52, 313, 174,( )A.5;B.515;C.525;D.545;分析:选B,52中5
18、除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)【18】5, 15, 10, 215, ( )A、415;B、-115;C、445;D、-112; 答:选B,前一项的平方减后一项等于第三项,55-15=10; 1515-10=215; 1010-215=-115【19】-7,0, 1, 2, 9, ( ) A、12;B、18;C、24;D、28; 答: 选D, -7=(-2)3+1; 0=(-1)3+1; 1=03+1;2=13+1;9=23+1; 28=33+1【20】0,1,3,10,( ) A、101;B、102;
19、C、103;D、104; 答:选B,思路一: 00+1=1,11+2=3,33+1=10,1010+2=102;思路二:0(第一项)2+1=1(第二项) 12+2=3 32+1=10 102+2=102,其中所加的数呈1,2,1,2 规律。思路三:各项除以3,取余数=0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;【21】5,14,65/2,( ),217/2 A.62;B.63;C. 64;D. 65; 答:选B,5=10/2 ,14=28/2 , 65/2, ( 126/2), 217/2,分子= 10=23+2; 28=33+1;65=43+1;(126)=53+1;217=63
20、+1;其中2、1、1、1、1头尾相加=1、2、3等差【22】124,3612,51020,( )A、7084;B、71428;C、81632;D、91836;答:选B,思路一: 124 是 1、 2、 4; 3612是 3 、6、 12; 51020是 5、 10、20;71428是 7, 14 28;每列都成等差。思路二: 124,3612,51020,(71428)把每项拆成3个部分=1,2,4、3,6,12、5,10,20、7,14,28=每个 中的新数列成等比。思路三:首位数分别是1、3、5、( 7 ),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),
21、故应该是71428,选B。【23】1,1,2,6,24,( )A,25;B,27;C,120;D,125解答:选C。思路一:(1+1)1=2 ,(1+2)2=6,(2+6)3=24,(6+24)4=120思路二:后项除以前项=1、2、3、4、5 等差 【24】3,4,8,24,88,( )A,121;B,196;C,225;D,344解答:选D。思路一:4=20 +3,8=22 +4,24=24 +8,88=26 +24,344=28 +88思路二:它们的差为以公比2的数列:4-3=20,8-4=22,24-8=24,88-24=26,?-88=28,?=344。 【25】20,22,25,3
22、0,37,( )A,48;B,49;C,55;D,81解答:选A。两项相减=2、3、5、7、11质数列 【26】1/9,2/27,1/27,( )A,4/27;B,7/9;C,5/18;D,4/243;答:选D,1/9,2/27,1/27,(4/243)=1/9,2/27,3/81,4/243=分子,1、2、3、4 等差;分母,9、27、81、243 等比 【27】2,3,28,65,( ) A,214;B,83;C,414;D,314; 答:选D,原式可以等于:2,9,28,65,( ) 2=111 + 1;9=222 + 1;28=333 + 1;65=444 + 1;126=555 +
23、1;所以选 126 ,即 D 314【28】1,3,4,8,16,( ) A、26;B、24;C、32;D、16; 答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32【29】2,1,2/3,1/2,( )A、3/4;B、1/4;C、2/5;D、5/6;答:选C ,2, 1 , 2/3 , 1/2 , (2/5 )=2/1, 2/2, 2/3, 2/4 (2/5)=分子都为2;分母,1、2、3、4、5等差【30】 1,1,3,7,17,41,( ) A89;B99;C109;D119 ;答:选B, 从第三项开始,第一项都等于前一项的2倍
24、加上前前一项。21+1=3;23+1=7;27+3=17; ;241+17=99 【31】 5/2,5,25/2,75/2,( )答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,( )=525/4【32】6,15,35,77,( ) A 106;B117;C136;D163答:选D,15=62+3;35=152+5;77=352+7;163=772+9其中3、5、7、9等差【33】1,3,3,6,7,12,15,( )A17;B27;C30;D24;答:选D, 1, 3, 3, 6, 7, 12, 15, ( 24 )=奇数项1、3、7、15=新的
25、数列相邻两数的差为2、4、8 作差=等比,偶数项 3、6、12、24 等比【34】2/3,1/2,3/7,7/18,( )A、4/11;B、5/12;C、7/15;D、3/16分析:选A。4/11,2/3=4/6,1/2=5/10,3/7=6/14,分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22【35】63,26,7,0,-2,-9,( )A、-16;B、-25;C;-28;D、-36分析:选C。43-1=63;33-1=26;23-1=7;13-1=0;(-1)3-1=-2;(-2)3-1=-9;(-3)3 - 1 = -28【36】1,2,3,6,11,20,(
26、 )A、25;B、36;C、42;D、37分析:选D。第一项+第二项+第三项=第四项 6+11+20 = 37【37】 1,2,3,7,16,( )A.66;B.65;C.64;D.63 分析:选B,前项的平方加后项等于第三项【38】 2,15,7,40,77,( ) A、96;B、126;C、138;D、156 分析:选C,15-2=13=42-3,40-7=33=62-3,138-77=61=82-3【39】2,6,12,20,( )A.40;B.32;C.30;D.28答:选C,思路一: 2=22-2;6=32-3;12=42-4;20=52-5;30=62-6;思路二: 2=12;6=
27、23;12=34;20=45;30=56【40】0,6,24,60,120,( )A.186;B.210;C.220;D.226;答:选B,0=13-1;6=23-2;24=33-3;60=43-4;120=53-5;210=63-6【41】2,12,30,( )A.50;B.65;C.75;D.56答:选D,2=12;12=34;30=56;56=78【42】1,2,3,6,12,( ) A.16;B.20;C.24;D.36答:选C,分3组=(1,2),(3,6),(12,24)=每组后项除以前项=2、2、2【43】1,3,6,12,( )A.20;B.24;C.18;D.32答:选B,思
28、路一:1(第一项)3=3(第二项);16=6;112=12;124=24其中3、6、12、24等比, 思路二:后一项等于前面所有项之和加2= 3=1+2,6=1+3+2,12=1+3+6+2,24=1+3+6+12+2【44】-2,-8,0,64,( ) A.-64;B.128;C.156;D.250 答:选D,思路一:13(-2)=-2;23(-1)=-8;330=0;431=64;所以532=250=选D【45】129,107,73,17,-73,( )A.-55;B.89;C.-219;D.-81;答:选C, 129-107=22; 107-73=34;73-17=56;17-(-73)
29、=90;则-73 - ( )=146(22+34=56;34+56=90,56+90=146)【46】32,98,34,0,( )A.1;B.57;C. 3;D.5219;答:选C,思路一:32,98,34,0,3=每项的个位和十位相加=5、17、7、0、3=相减=-12、10、7、-3=视为-1、1、1、-1和12、10、7、3的组合,其中-1、1、1、-1 二级等差12、10、7、3 二级等差。思路二:32=2-3=-1(即后一数减前一个数),98=8-9=-1,34=4-3=1,0=0(因为0这一项本身只有一个数字, 故还是推为0),?=?得新数列:-1,-1,1,0,?;再两两相加再得
30、出一个新数列:-2,0,1.?;20-2=-2;21-2=0;22-3=1;23-3=?=3【47】5,17,21,25,( )A.34;B.32;C.31;D.30答:选C, 5=5 , 17=1+7=8 , 21=2+1=3 , 25=2+5=7 ,?=?得到一个全新的数列5 , 8 , 3 , 7 , ?前三项为5,8,3第一组, 后三项为3,7,?第二组,第一组:中间项=前一项+后一项,8=5+3,第二组:中间项=前一项+后一项,7=3+?,=?=4再根据上面的规律还原所求项本身的数字,4=3+1=31,所以答案为31【48】0,4,18,48,100,( )A.140;B.160;C
31、.180;D.200;答:选C,两两相减?4,14,30,52 ,()-100 两两相减 10.16,22,()=这是二级等差=0.4.18.48.100.180=选择C。思路二:4=(2的2次方)1;18=(3的2次方)2;48=(4的2次方)3;100=(5的2次方)4;180=(6的2次方)5【49】 65,35,17,3,( ) A.1;B.2;C.0;D.4;答:选A, 65=88+1;35=66-1;17=44+1;3=22-1;1=00+1【50】 1,6,13,( )A.22;B.21;C.20;D.19;答:选A,1=12+(-1);6=23+0;13=34+1;?=45+2
32、=22【51】2,-1,-1/2,-1/4,1/8,( ) A.-1/10;B.-1/12;C.1/16;D.-1/14;答:选C,分4组,(2,-1);(-1,-1/2);(-1/2,-1/4);(1/8,(1/16)=每组的前项比上后项的绝对值是 2【52】 1,5,9,14,21,( )A. 30;B. 32;C. 34;D. 36;答:选B,1+5+3=9;9+5+0=14;9+14+(-2)=21;14+21+(-3)=32,其中3、0、-2、-3二级等差【53】4,18, 56, 130, ( )A.216;B.217;C.218;D.219答:选A,每项都除以4=取余数0、2、0
33、、2、0【54】4,18, 56, 130, ( )A.26;B.24;C.32;D.16;答:选B,各项除3的余数分别是1、0、-1、1、0,对于1、0、-1、1、0,每三项相加都为0【55】1,2,4,6,9,( ),18A、11;B、12;C、13;D、18;答:选C,1+2+4-1=6;2+4+6-3=9;4+6+9-6=13;6+9+13-10=18;其中 1、3、6、10二级等差【56】1,5,9,14,21,( )A、30;B. 32;C. 34;D. 36;答:选B,思路一:1+5+3=9;9+5+0=14;9+14-2=21;14+21-3=32。其中,3、0、-2、-3 二
34、级等差,思路二:每项除以第一项=5、9、14、21、32=52-1=9; 92-4=14;142-7=21; 212-10=32.其中,1、4、7、10等差【57】120,48,24,8,( ) A.0;B. 10;C.15;D. 20;答:选C, 120=112-1; 48=72-1; 24=52 -1; 8=32 -1; 15=(4)2-1其中,11、7、5、3、4头尾相加=5、10、15等差【58】48,2,4,6,54,( ),3,9A. 6;B. 5;C. 2;D. 3;答:选C,分2组=48,2,4,6 ; 54,( ) ,3,9=其中,每组后三个数相乘等于第一个数=462=48
35、239=54【59】120,20,( ),-4A.0;B.16;C.18;D.19;答:选A, 120=53-5;20=52-5;0=51-5;-4=50-5【60】6,13,32,69,( ) A.121;B.133;C.125;D.130答:选B, 6=32+0;13=34+1;32=310+2;69=322+3;130=342+4;其中,0、1、2、3、4 一级等差;2、4、10、22、42 三级等差 【61】1,11,21,1211,( ) A、11211;B、111211;C、111221;D、1112211分析:选C,后项是对前项数的描述,11的前项为1 则11代表1个1,21的前
36、项为11 则21代表2个1,1211的前项为21 则1211代表1个2 、1个1,111221前项为1211 则111221代表1个1、1个2、2个1【62】-7,3,4,( ),11A、-6;B. 7;C. 10;D. 13;答:选B,前两个数相加的和的绝对值=第三个数=选B【63】3.3,5.7,13.5,( ) A.7.7;B. 4.2;C. 11.4;D. 6.8;答:选A,小数点左边:3、5、13、7,都为奇数,小数点右边:3、7、5、7,都为奇数,遇到数列中所有数都是小数的题时,先不要考虑运算关系,而是直接观察数字本身,往往数字本身是切入点。【64】33.1, 88.1, 47.1
37、,( )A. 29.3;B. 34.5;C. 16.1;D. 28.9;答:选C,小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1 等差 【65】5,12,24, 36, 52, ( )A.58;B.62;C.68;D.72;答:选C,思路一:12=25+2;24=45+4;36=65+6;52=85+12 68=105+18,其中,2、4、6、8、10 等差; 2、4、6、12、18奇数项和偶数项分别构成等比。思路二:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37质数列的变形,每两个分成一组=(2,3)(5,7)(11,
38、13)(17,19)(23,29)(31,37) =每组内的2个数相加=5,12,24,36,52,68【66】16, 25, 36, 50, 81, 100, 169, 200, ( ) A.289;B.225;C.324;D.441;答:选C,奇数项:16, 36, 81, 169, 324=分别是42, 62, 92, 132,182=而4,6,9,13,18是二级等差数列。偶数项:25,50,100,200是等比数列。【67】1, 4, 4, 7, 10, 16, 25, ( )A.36;B.49;C.40;D.42答:选C,4=1+4-1;7=4+4-1;10=4+7-1;16=7+
39、10-1;25=10+16-1;40=16+25-1【68】7/3,21/5,49/8,131/13,337/21,( ) A.885/34;B.887/34;C.887/33;D.889/3答:选A,分母:3, 5, 8, 13, 21, 34两项之和等于第三项,分子:7,21,49,131,337,885分子除以相对应的分母,余数都为1,【69】9,0,16,9,27,( ) A.36;B.49;C.64;D.22;答:选D, 9+0=9;0+16=16;16+9=25;27+22=49;其中,9、16、25、36分别是32, 42, 52, 62,72,而3、4、5、6、7 等差【70】
40、1,1,2,6,15,( )A.21;B.24;C.31;D.40; 答:选C,思路一: 两项相减=0、1、4、9、16=分别是02, 12, 22, 32, 42,其中,0、1、2、3、4 等差。思路二: 头尾相加=8、16、32 等比【71】5,6,19,33,( ),101A. 55;B. 60;C. 65;D. 70;答:选B,5+6+8=19;6+19+8=33;19+33+8=60;33+60+8=101【72】0,1,(),2,3,4,4,5A. 0;B. 4;C. 2;D. 3答:选C,思路一:选C=相隔两项依次相减差为2,1,1,2,1,1(即2-0=2,2-1=1,3-2=1,4-2=2,4-3=1,5-4=1)。思路二:选C=分三组,第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项为一组=即0,2,4;1,