收藏 分销(赏)

第五章案例分析.doc

上传人:w****g 文档编号:2617771 上传时间:2024-06-03 格式:DOC 页数:6 大小:256.04KB
下载 相关 举报
第五章案例分析.doc_第1页
第1页 / 共6页
第五章案例分析.doc_第2页
第2页 / 共6页
第五章案例分析.doc_第3页
第3页 / 共6页
第五章案例分析.doc_第4页
第4页 / 共6页
第五章案例分析.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、第五章 案例分析一、问题的提出和模型设定根据本章引子提出的问题,为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。假定医疗机构数与人口数之间满足线性约束,则理论模型设定为 (5.31)其中表示卫生医疗机构数,表示人口数.由2001年四川统计年鉴得到如下数据.表5。1 四川省2000年各地区医疗机构数与人口数地区人口数(万人)X医疗机构数(个)Y地区人口数(万人)X医疗机构数(个)Y成都1013.36304眉山339。9827自贡315911宜宾508.51530攀枝花103934广安438。61589泸州463。71297达州620.12

2、403德阳379.31085雅安149。8866绵阳518。41616巴中346.71223广元302.61021资阳488.41361遂宁3711375阿坝82。9536内江419.91212甘孜88。9594乐山345。91132凉山402。41471南充 709。2 4064二、参数估计进入EViews软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下 表5.2估计结果为 (5。32)括号内为t统计量值。 三、检验模型的异方差本例用的是四川省2000年各地市州的医疗机构数和人口数,由于地区之间存在的不同人口数,因此,对各种医疗机构的设置数量会存在不同的需求,这种差

3、异使得模型很容易产生异方差,从而影响模型的估计和运用。为此,必须对该模型是否存在异方差进行检验。(一)图形法1、EViews软件操作。由路径:Quick/Qstimate Equation,进入Equation Specification窗口,键入“y c x,确认并“ok”,得样本回归估计结果,见表5。2。(1)生成残差平方序列。在得到表5。2估计结果后,立即用生成命令建立序列,记为e2.生成过程如下,先按路径:Procs/Generate Series,进入Generate Series by Equation对话框,即 图5.4然后,在Generate Series by Equatio

4、n对话框中(如图5.4),键入“e2=(resid)2”,则生成序列。(2)绘制对的散点图。选择变量名X与e2(注意选择变量的顺序,先选的变量将在图形中表示横轴,后选的变量表示纵轴),进入数据列表,再按路径view/graph/scatter,可得散点图,见图5。5。 图5。52、判断.由图5。5可以看出,残差平方对解释变量X的散点图主要分布在图形中的下三角部分,大致看出残差平方随的变动呈增大的趋势,因此,模型很可能存在异方差。但是否确实存在异方差还应通过更进一步的检验.(二)GoldfeldQuanadt检验1、EViews软件操作。(1)对变量取值排序(按递增或递减)。在Procs菜单里选

5、Sort Series命令,出现排序对话框,如果以递增型排序,选Ascenging,如果以递减型排序,则应选Descending,键入X,点ok。本例选递增型排序,这时变量Y与X将以X按递增型排序。(2)构造子样本区间,建立回归模型.在本例中,样本容量n=21,删除中间1/4的观测值,即大约5个观测值,余下部分平分得两个样本区间:18和14-21,它们的样本个数均是8个,即。在Sample菜单里,将区间定义为18,然后用OLS方法求得如下结果表5.3在Sample菜单里,将区间定义为14-21,再用OLS方法求得如下结果表5。4(3)求F统计量值。基于表5.3和表5.4中残差平方和的数据,即S

6、um squared resid的值。由表5.3计算得到的残差平方和为,由表5.4计算得到的残差平方和为,根据Goldfeld-Quanadt检验,F统计量为 (5.33)(4)判断。在下,式(5.33)中分子、分母的自由度均为6,查F分布表得临界值为,因为,所以拒绝原假设,表明模型确实存在异方差。(三)White检验由表5。2估计结果,按路径view/residual tests/white heteroskedasticity(no cross terms or cross terms),进入White检验。根据White检验中辅助函数的构造,最后一项为变量的交叉乘积项,因为本例为一元函数

7、,故无交叉乘积项,因此应选no cross terms,则辅助函数为 (5。34)经估计出现White检验结果,见表5。5。从表5。5可以看出,,由White检验知,在下,查分布表,得临界值(在(5。34)式中只有两项含有解释变量,故自由度为2),比较计算的统计量与临界值,因为,所以拒绝原假设,不拒绝备择假设,表明模型存在异方差.表5.5 四、异方差性的修正 (一)加权最小二乘法(WLS)在运用WLS法估计过程中,我们分别选用了权数。权数的生成过程如下,由图5.4,在对话框中的Enter Quation处,按如下格式分别键入:;,经估计检验发现用权数的效果最好。下面仅给出用权数的结果。表5.7表5。7的估计结果如下 (5。36)括号中数据为t统计量值。可以看出运用加权小二乘法消除了异方差性后,参数的t检验均显著,可决系数大幅提高,F检验也显著,并说明人口数量每增加1万人,平均说来将增加2.953个卫生医疗机构,而不是引子中得出的增加5。3735个医疗机构。虽然这个模型可能还存在某些其他需要进一步解决的问题,但这一估计结果或许比引子中的结论更为接近真实情况。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服