收藏 分销(赏)

苏教版八年级下册数学教案全集.pdf

上传人:曲**** 文档编号:261442 上传时间:2023-06-09 格式:PDF 页数:154 大小:4.35MB
下载 相关 举报
苏教版八年级下册数学教案全集.pdf_第1页
第1页 / 共154页
苏教版八年级下册数学教案全集.pdf_第2页
第2页 / 共154页
苏教版八年级下册数学教案全集.pdf_第3页
第3页 / 共154页
苏教版八年级下册数学教案全集.pdf_第4页
第4页 / 共154页
苏教版八年级下册数学教案全集.pdf_第5页
第5页 / 共154页
点击查看更多>>
资源描述

1、精选资料第八章分式8.1 分式8.1 从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4思考,学生自己依次填出:丝,或,即。,匕7 4 33s2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航 速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速 为多少?请同学们跟着教师一起设未知数,列

2、方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为小时逆流航行60千米所用时间60小时,20+v 2 0-v所以 100=60.20+v 20-v3.以上的式子”.60.5.y.有什么共同点?它们与分数有什么相同点和不20+v 2 0-v a s 同点?五、例题讲解P5例1.当x为何值时,分式有意义.分析已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x的取值范围.提问如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生 一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2.当m为何值时,分式的值为0?加 m 2 加2-1(1)加一 1

3、(2)m+3(3)m+l可修改编辑精选资料分析分式的值为0时,必须回时满足两个条件:。分母不能为零;。分子为零,这 样求出的m的解集中的公共部分,就是这类题目的解.答案(1)m=0(2)m=2(3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4,Z,9+y,竺心,上2,Jx 20 5 y2 x 92.当x取何值时,下列分式有意义?_2_ x+5 2x=5(1)尤+2(2)3x(3)x2-43.当x为何值时,分式的值为0?一1(1)3(2)(3)5x 21-3x七、课后练习1 列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件

4、个,做80个零件需 小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是 千米/时.(3)x与y的差于4的商是.丫2+12.当x取何值时,分式-无意义?3%-23.当x为何值时,分式屋L1的值为0?八、答案:六、1.整式:9x+4,2.(1)x*-2丝a 分式:1,8y-3.120 5%y2 x-93(2)x丰$(3)x*23.(1)x=-7(2)x=080七、1.18x,T,a+b,$a+b 4(3)x=-1整式:8x,a+b,*y;4分式:色,二 x a+b2.2.X=7 3.x=-1可修改编辑精选资料课后反思:8.1.2分式的基本性质

5、一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.直点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整 式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号 里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分值得注意的 是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各 个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幕的积

6、,作为最 可修改编辑精选资料简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应 概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含 号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符 号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含号”是分式的基本性质的应用之一,所以补 充例5.四、课堂引入3 15 _9_ 31.请同学们考虑:7与面相等吗前 与5相等吗?为什么?1 15 2 32.说出4与20之间变形的过程制 与8之间变形的过程,并说出变形依据?3.提

7、问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值 不变.P11例3.约分:分析约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的 值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:分析通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的 最高次幕的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含号.-6b,二,_空,7m,_3xo-5a 3y-n 6n-4y分析每个分式的分子、分母和分式本身都有自己

8、的符号,其中两个符号同时改变,分 式的值不变.”6b 6b-x x 2m 2mnJZ-_ 解一品,37-3y 1 可修改编辑精选资料-7m 7m 6n 6n六、随堂练习1.填空:2x2()(1)-v=-X2+3x x+5b+l()(3)工a+c an+cn2.约分:3a2b 8m2(1)(2)-6ab2c 2mn2-3%3%丁一九3.通分:1 m 2(1)2ab3 5aibic3c b a(3)FT和一k 2ab2 88c2a _ b石和乐4.不改变分式的值,使下列分式的分子和分母都不含号.一3y 43F一际-5a-(a-b)2-m七、课后练习1.判断下列约分是否正确:a+c a x-y 1(

9、1)-7-=-r(2)-=-b+C b%2-y2%+ym+n(3)=0 m+n2.通分:3ab2 7a2b-x x-+x3.不改变分式的值,使分子第一项系数为正,分式本身不带号.-2a-b-x+2y(2)-37TT八、答案:可修改编辑精选资料六、1.(1)2x 4b(3)bn+n(4)x+ya2亚4m(2)n(3)-(4)-2(x-y)23.通分:(2)(3)(4)(1)15ac2_ 4 b2ab310a263c 5a2b2c10。263ca3axb2by26%2 y 3%26%2 y3c_ 12c3a_ ab2ab 28ab2c28儿28ab2c21_ y+i1y-iy-i(y l)(y+l

10、)y+1(y l)(y+l)4.(1)尤3y3ab2317 b2(3)5a13x2小(4)-m一课后反思:可修改编辑精选资料16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算.三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉 v m机的工作效率的多少倍,这两个引例所得到的容积的高是 一,大拖拉机的工作效率是 ab n小拖拉机的工作效率的(巴+2倍.引出了分式的乘除法的实际存在的意义,进一步弓|出 m n

11、 JP14观察从分数的乘除法引导学生类比出分式的乘除法的法则但分析题意、列式子时,不 易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最 简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因 式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据 问题的实际意义可知a 1,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)21,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)2a2-1,可得出“丰收2号”单位面积产量高.六、随堂练习计算(1)已.处(2)二.如(3

12、)上/二)ab c 2m 53 7x.(x J(4)-8xy.2,LT竺二(6)/f+9 丫)七、课后练习计算(1)红(7(2)空/一他)(3)为-2)(x-2)2%+3-(%-3)2x 2可修改编辑精选资料六、随堂练习计算3b 2 be,2a,5c z,、2 0c 3(1)+-(-)(2)-+(-6q6c2).-16。2612 b /2612b4 30。3加03(x-y)2 9/、%2-2xy+y2 x-y(4)(孙一2)+-%2七、课后练习计算 8X2,4.合+(一爰)y2-4y+4 1 12-6y(3)-,-+-2 y-6 y+3 9-y2。2-6a+9 3-。2)4-b2 2+b 3a

13、-9x2+xy、x y-+(%+y)+x 2-xy y2 xy八、答案:.36xz七一T y35 一雨。2口(3)(%-y)4-3-2-y(3)(4)-y1(4)x,3a2六F课后反思:可修改编辑精选资料16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1.P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再

14、做乘除.2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练 习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方 的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺 序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:提问由以上计算的结果你能推出(?)(n为正整数)的结果吗?b五、例题讲解(P17)例5.计算分析第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对

15、学生强调运算 顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.可修改编辑精选资料力3、b51)-)2=一2a 2a2,一3久-处2(2)(2 a”一 4 a22y 8y33)(”Q-3x 9x3,3%、9x2(4)(,)2.x-b%2-力22.计算,5x2 3a2b、/G3 q y(方)2(2)(4)3(3)()3/2y-X3%V2(4)(-)3-()2 5)()2-(-)4-(-Xy 4)一Z2 z y%(6)(一;)2(-)3+(一台)22x 2y lay七、课后练习计算/2b2、(1)(-*4 3/2(一嬴之(三)2+(三州+(2)4(4)aw a3b c ab八

16、、答案:A)六、1.不成立,(赤)2=1(2)不成立,(-3b)2=9b24 a 22.(3)不成立,(圣8y327x33%(4)不成立,(-)2=x-b9x2X2 2bx+b2(1)25x49y227。6匕3 8c9(3)8G3X49y2(4)rZ4(6)a3y2 4x2七、-8Z?6Q9。4匕2+2(4)1高a+b b课后反思:可修改编辑精选资料16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例

17、、习题的意图分析1.P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完 成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天 完成这项工程的1+1.这样引出分式的加减法的实际背景问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算2.P19观察是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减 法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P2 0例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二 个分式的分子式个单项式,不涉及到分子变号的问题,比较

18、简单,所以要补充分子是多项式 修改编辑精选资料的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分 母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些 题,以供学生练习,巩固分式的加减法法则.(4)P2 1例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1,R2).*的关系为=+.若知道这个公式,就比较容易地用含有的式R R R R1 2 n子表示R2,列出1 _ 1-,-1,下面的计算就是异分母的分式加法的运算了,得到R R R+50 1 11_ 2勺+50,再利用倒数的

19、概念得到R的结果.这道题的数学计算并不难,但是物理的知 R R(R+50)1 1识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物 理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放 在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运 算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出天一,的最简公分母是什么?你能说出最简公

20、分母的 2%2 y3 3%4 y2 9%y2确定方法吗?五、例题讲解(P20)例6.计算分析第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式 的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积(补充)例.计算1%+3y%+2 y 3yX2-y2%2-y2 九2-y2分析第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看 修改编辑精选资料作一个整体加上括号参加运算,结果也要约分化成最简分式.%+3y x+2y 2x-3y解:-+-X2-y2 X2-y2 X2-y2

21、_(x+3y)-(%+2y)+(2 x-3y)九2-y22x-2y%2-y22(x-y)(x-y)(x+y)_ 2%+y1 1-x 6(2)-+-%-3 6+2%2-9分析第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简 公分母,进行通分,结果要化为最简分式.1 1-x 6解:+-x-3 6+2x X2 91 1-x 6x-3 2(%+3)(%+3)(%-3)_2(%+3)+(1-)。3)-122(%+3)(%-3)_-(%2-6%+9)=2(%+3)(十 一 3)_ _(九-3)2-2(%+3)(十 一 3)x-32%+6六、随堂练习计算3a+2b 5612ba+bb-

22、am+2n(2)-n-mn+_2m5a2b5a2bm n;2 I1(q +63a 6b(A 5a-6b4a-5b7a 8ba+3G2-9a+ba-ba+ba-b可修改编辑精选资料七、课后练习计算(1)5a+6b3b-4a a+3b,+3b-aa+2b_3q 4。3a2bc3ba2c 3cba22-Z72“2 匕 2Z?2 一。2b2-LQ2,1(A13%a-bb-a6%4 y6x-4y4 y2-6x2八、答案:5a+2b 四.k3m+3(2)-n m2 a 3b五育(2)e(3N1(3)-(4)1a-514)tz-3x-2 y课后反思:可修改编辑精选资料16.2.2分式的加减(二)一、教学目标

23、:明确分式混合运算的顺序,熟练地进行分式的混合运算 二、重点、难点1.点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析1.P2 1例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的 混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的 结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的 混合运算.2.P2 2页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合

24、运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同五、例题讲解(P21)例8.计算分析这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分 式.(补充)计算/x+2 x-1、4-x(1)(-)+-x2-2x 124%+4 x可修改编辑精选资料分析这道题先做括号里的减法,再把除法转化成乘法,把分母的号提到分式本身 的前边./冗+2 x 1、4 x解:(-)+-X2-2x%24%+4 xx+2 x-1 x=L-J-%(%2)(x 2)2 (x 4)(x+2)(x-2)x(x-l)x=L-J

25、,-x(x-2)2 x(x-2)2-(x-4)_X2-4-X2+x Xx(x 2)2 (x 4)_ 1%2-4 x+4x y2 x4y.x2X-y x+y 14-y4 X2+y2分析这道题先做乘除,再做减法,把分子的号提到分式本身的前边.E%,2解:-x-y x+yx4y.x214 y4 X2+y2x y2 x4y x2+y2X-y%+y(12+丁2)(%2 y2)X2xy2 x2y(x-y)(x+y)X2-y2孙(y-%)(x-y)(x+y)xy x+y六、随堂练习计算(1)(4、x+2+-)+-2-x 2x3 12、,2 1-+-)+(-a 2)”,)x-y x+y/。+2 q 1 ci

26、2 4 a(2)(-)-+-2-2a q2-4q+4 a a?A 1 1.孙(3)(一+)-%y z xy+yz+zx1 1 42.计算(一-,并求出当。=-1的值.a+2 a-2。2八、答案:六、(1)2 x(2)ab力3,XV七、1.一L-%2-y2G2 12-。2_4 31 1力课后反思:16.2.3整数指数幕一、教学目标:1.知道负整数指数幕(a*0,n是正整数).an2.掌握整数指数幕的运算性质.3.会用科学计数法表示小于1的数.、重点、难点1.重点:掌握整数指数幕的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1.P2 3思考提出问题,引出本节课的主要内容

27、负整数指数幕的运算性质.2.P2 4观察是为了引出同底数的幕的乘法:am-an=an,这条性质适用于m,n 是任意整数的结论,说明正整数指数幕的运算性质具有延续性,其它的正整数指数幕的运算 修改编辑精选资料性质,在整数范围里也都适用.3.P2 4例9计算是应用推广后的整数指数幕的运算性质,教师不要因为这部分知识 已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整 数指数幕的运算的教学目的.4.P2 5例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幕的引入可以使除法转化为乘法这个结论从而使分式的运算与整式的运算统 一起来.5.P2

28、5最后一段是介绍会用科学计数法表示小于1的数.用科学计算法表示小于1的 数,运用了负整数指数幕的知识.用科学计数法不仅可以表示小于1的正数,也可以表示一 个负数.6.P2 6思考提出问题,让学生思考用负整数指数幕来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个 数时,10的指数就是负几.7.P2 6例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识 更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幕的运算性质:(1)同底数的幕的乘法:刖.an=am+n(m,n是正整数);(2)幕的乘方:(刖

29、)”=amn(m)n是正整数);(3)积的乘方:(ab)n=anbn(n是正整数);(4)同底数的幕的除法:。机=am-n(a*0,m,n是正整数,mn);a an(5)商的乘方:(石)”=不-(n是正整数);2.回忆0指数幕的规定,即当a*0时,。=1.3.你还记得1纳米=10-9米,即1纳米=上米吗?109Q3。3 14.计算当a*0时,。3+5=一=-=,再假设正整数指数幕的运算性质G5 Q3。2am+a”=am-n(a*0,m,n是正整数,mn)中的m n这个条件去掉,那么。3=03-5=0-2.于是得到G-2=_(3*0),就规定负整数指数幕的运算性质:当n是42可修改编辑精选资料正

30、整数时,-=(a*0).an五、例题讲解(P24)例9.计算分析是应用推广后的整数指数幕的运算性质进行计算,与用正整数指数幕的运算性质进行计算一样,但计算结果有负指数幕时,要写成分式形式(P25)例10.判断下列等式是否正确?分析类比负数的引入后使减法转化为加法,而得到负指数幕的引入可以使除法转化 为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例 11.分析是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-2 2=(2)(-2)2=(3)(-2)o=(4)2 o=(5)2-3=(6)(-2)-3=2.计算(1)(X

31、3y-2)2(2)X2Y-2,(X-2y)3(3)(3X2y-2)2+(X-2y)3七、课后练习1.用科学计数法表示下列各数:0.000 04,-0.034,0.000 000 45,0.003 0092.计算(1)(3x10-8)x(4x103)(2)(2x10-3)2-(10-3)3八、答案:,1 1A.1.(1)-4(2)4(3)1(4)1(5)-(6)-O OX6 V 9x102.(1)(2)-(3)4 14 yl七、1.(1)4x10-5(2)3.4x10-2(3)4.5x10.7(4)3.009x10-32.(1)1.2x10.5(2)4 x103可修改编辑精选资料课后反思:16.

32、3分式方程(一)一、教学目标:1.了解分式方程的概念,和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习鹿的意图分析1.P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根 的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方 程的解,而有的分式方程去

33、分母后得到的整式方程的解就不是原方程的解,引出分析产生增 根的原因,及P33的归纳出检验增根的方法.4.P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5.教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可 以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不 为0,才能除以这个系数.这种方程的解必须验根.四、课堂引入%+2 2x 31.回忆一元一次方程的解法,并且解方程一一一=14 62.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所 用时间,与以最大航速逆流航行60千米所用时间相

34、等,江水的流速为多少?可修改编辑精选资料分析:设江水的流速为V千米/时,根据“两次航行所用时间相同”这一等量关系,得到方e 100 60节口 一20+4-2 0-K像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程分析找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便(P34)例2.解方程分析找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最 简公分母(x-1)(x+2),整式方程的解必须验根.六、I堂练习解

35、方程3 2 2 3 6-=-(2)-+-=-X X-6 x+l x-1 犬21x+1 4 1二目=1(4)2x x-+-2 x 1 x 2七、课后练习1.解方程2 1 6 4%一7(1)-=0(2)-=1-)5+尤 1+x)3%一8 8 3%2 3 4 c 1 5 3(3)-+-=0(4)-=-X2+x X2-x X2-1 x+1 2无+2 42.X为何值时,代数式2%一一二一三的值等于2?x+3 X 3 x八、答案:4六、(1)x=18(2)原方程无解(3)x=1(4)x=-3七、1.(1)x=3(2)x=3(3)原方程无解(4)x=1 2.x=-可修改编辑精选资料课后反思:16.3分式方程

36、(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问 题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙 队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中 修改编辑精选资料的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工 速度快,才能完成解题的全过程(2)教材的

37、分析是填空的形式,为学生分析题意、设未知 数搭好了平台,有助于学生找出题目中等量关系,列出方程P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的 列车平均提速v千米/时,提速前行驶的路程为s千米,完成.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例 题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米 所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过 程中遇到困难时,教师应启发诱导,让学

38、生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和 解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一 些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的 数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35 例 3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率X工作时间.这题没 有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工

39、作量=1P36 例 4路程分析是一道行程问题的应用题,基本关系是速度=时间.这题用字母表示已知魏量)等量关系是:提速前所用的时间=提速后所用的时间五、随堂练习1.学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2.一项工程要在限期内完成如果第一组单独做,恰好按规定日期完成;如果第二组单独 可修改编辑精选资料做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好 在规定日期内完成,问规定日期是多少天?3.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,

40、共 用了 2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑 自行车的速度.六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把 速度加快!,结果于下午4时到达,求原计划行军的速度。2.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就 完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的;,求甲、乙两队单独完成各需多少天?3.甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器个 加入等量水,使它们的浓度相等,那么加入的水是多少升?七、答案:五、1.15个,20个 2.1

41、2天 3.5千米/时,20千米/时六、1.10千米/时 2.4天,6天 3.20升课后反思:可修改编辑精选资料第十七章反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式可修改编辑精选资料3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题 出发,探索其中的数量关系和变化规律,通过观

42、察、讨论、归纳,最后得出反比例函数的概 念,体会函数的模型思想。教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要 加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数 所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3 是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难 度,但能提高学生分析、解决问题的能力。四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,

43、那么,时间与平均速度的关系是怎样的?五、例习题分析例1.见教材P47分析:因为y是x的反比例函数,所以先设y-,再把x=2和y=6代入上式求出x常数k,即利用了待定系数法确定函数解析式。例 1.(补充)下列等式中,哪些是反比例函数修改编辑精选资料%J2 5 3(1)y=可(2)y=-J(3)x y=21(4)y=(5)y=二3 x x+2 2x1 c(6)y=+3(7)y=x-4x分析:根据反比例函数的定义,关键看上面各式能否改写成y=-(k为常数,k*0)x1+3%的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是丁=-,x分子不是常数,只有(2)、(3)、(5)能

44、写成定义的形式例2.(补充)当m取什么值时,函数y=(加2)%3-机2是反比例函数?分析:反比例函数y=2(k*o)的另一种表达式是y=丘-1(k*0),后一种写法中 xx的次数是-1,因此m的取值必须满足两个条件,即m-2*0且3-m2=-1,特别注意 不要遗漏k*0这一条件,也要防止出现3-m2=1的错误。解得m=-2例3.(补充)已知函数丫=乂+丫?,以与x成正比例,丫2与x成反比例,且当x=1时,y=4;当 x=2 时,y=5(1)求y与x的函数关系式(2)当x=-2时,求函数y的值分析:此题函数y是由九和丫2两个函数组成的,要用待定系数法来解答,先根据题意 分别设出、丫2与x的函数关

45、系式,再代入数值,通过解方程或方程组求出比例系数的值。这里要注意力与x和丫2与x的函数关系中的比例系数不一定相同,故不能都设为k,要用 不同的字母表示。k k略解:设=k.x(k*0),y=一(k*0),则y=女工+。,代入数值求得k=2,111 2%2 1 X 12k=2,则 y=2%+,当 x=-2 时,y=-5/x可修改编辑精选资料六、随堂练习1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为_2.若函数y=(3+加)X8M2是反比例函数,则m的取值是3.矩形的面积为4,一条边的长为X,另一条边的长为y,则y与x的函数解析式为4.已知y与x成反比例且当x=-2时,

46、丫=3则y与x之间的函数关系式是当*=-3 时,y=5.函数,=一一二中自变量x的取值范围是 x+2-七、课后练习已知函数y=+丫2,与x+1成正比例,丫2与X成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值答案:y=4课后反思:17.1.2反比例函数的图象和性质(1)一、教学目标可修改编辑精选资料1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法二、亶点、难点1.重点:理解并掌握反比例函数的图象和性质2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质三、例题的意图分析教材第48页的例2是

47、让学生经历用描点法画反比例函数图象的过程,一方面能进一步 熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。补充例1的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单 应用,使学生进一步理解反比例函数的图象特征及性质。补充例2是一道典型题,是关于反比例函数图象与矩形面积的问题,要让学生理解并 掌握反比例函数解析式y-(k*0)中卜|的几何意义。四、课堂引入提出问题:1.一次函数丫=kx+b(k、b是常数,k*0)的图象是什么?其性质有哪些?正比例函 数y=kx(k丰0)呢?2.画函数图象的方法是什么?

48、其一般步骤有哪些?应注意什么?3.反比例函数的图象是什么样呢?五、例习题分析例2.见教材P48,用描点法画图,注意强调:修改编辑精选资料(1)列表取值时,x*0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样 便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x*0,k*0,所以y*0,函数图象永远不会与x轴、y轴相交,只是无限靠 近两坐标轴例1.(补充)已知反比例函数y=(加1)

49、即2-3的图象在第二、四象限,求m值,并 指出在每个象限内y随x的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即y=丘-1(k*0)自变量x的 指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k0,则 不要忽视这个条件略解:.=(徵-1)%苏-3是反比例函数.-.m2-3=-1,且m-1丰0又.图象在第二、四象限.m-l vO解得m=J2且m 0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设aAOC和aBOD的面积分别是S1、S2,比C D x较它们的大小,可得((A)S S.(B)S1=S:可修改编辑精选资料(C)S1 0)的图象

50、上的一点分别作x轴、xy轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为七、课后练习3 m1.若函数y=(2加一 1)%与丫=的图象交于第一、三象限,则m的取值范围是 x22反比例函数y=-一,当x=-2时,y=;当x-2时;y的取值范围是3.已知反比例函数y=Q-2)%。26,当%时,y随X的增大而增大,求函数关系式答案:3.a=-J5,y-75-2可修改编辑精选资料17.1.2反比例函数的图象和性质(2)一、教学目标1.使学生进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 自考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服