1、 16。1.1 从分数到分式一教学目标(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。二教学重难点重点:分式的概念难点:识别分式有无意义;用分式描述数量关系三教法与学法基于以上教材特点和学生情况的分析,我在本节课主要采用“引导发现教学法”,借助于计算机课件,通过“问题情境建立模型解释、应用与拓展”的模式展
2、开教学。四教学过程数学课程标准明确指出:“数学教学是数学活动的教学,学生是数学学习的主人.”为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知再探新知-应用新知深化拓展小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。(一) 发现新知在这儿我对教材进行了处理,课本引例是 “土地沙化、固沙造林”问题,设问是“这一问题中有哪些等量关系?”我将引课方式改为通过学生自己构造代数式去发现分式,创设了这样的情境: 1.创设情境:教师给出探究要求: “代数式”庄园的果树上挂满了“整式”的果子:t,300,s,n,ax,0,180(n2),请你
3、任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有新的一类代数式吗?请说一说。作这样的改动,是基于以下考虑:原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程.针对我校学生的实际情况,我认为在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。 “好的教师不是在教数学而是激发学生自己去学数学”。用已给的7个整式进行代数式的构造时,学生可以写出多种多样的式子,里面既有单项式,也有多项式,还有分式。通过学生对自己所构造的代数式进行观察,创设发现情境,
4、学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。2.探索交流 :(1)议一议:你们所发现的这一类新代数式:,它们有什么共同特征?它们与整式有什么不同?(2)类比分数,概括分式的概念及表达形式被除数除数=商数 被除式除式=商式 类比3 4 = n (a-x) =整数 整数 分数 整式 整式 分式(3)小组内互举例子,判定是否分式针对学生的发现,采用“议一议的方式引导学生观察新式子的特征,类比分数,合理联想,从而获得分式的概念及一般表示形式,可谓水到渠成。通过列举具体例子,互说判别过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注
5、意辨析与的本质区别,强调分式的分母中必须含有字母。(二)再探新知如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我创设了以下活动供学生自主探究分式有意义的条件。1。探究活动(1)填表:a2-1012(2)概括分式在什么条件下有意义,对一般表达式里的分母B作出取值限定:B不能等于零首先是组织学生独立填写表格.表格的设计,旨在通过求分式的值,将“代数化”了的分式还原为学生熟悉的分数,通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服
6、和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,同时渗透从特殊到一般的数学思想.2。例题与练习例1.(1)当a=1,2时,分别求分式的值(2)a取何值时,分式 有意义?你知道吗:当x取什么值时,下列分式有意义?(1) (2) (3)例1由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。“你知道吗采用组内合作然后组间抢答的形式开展活动,激发兴趣.除课本随堂练习以外,我补充了第(3)问,加深学生对新知识的理解,强调分数线的括号作
7、用,强化分母的整体意识,从而进一步改善学生原有的认知结构.(三)应用新知 学生的个人知识、直接经验、生活世界是重要的课程资源。为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,我在此安排了三个问题,让学生通过运用分式表示数量关系,进一步熟悉数学的抽象概括过程,体会分式可以为解决实际问题服务.例2。面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2004公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务.如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要( )个月,实际完成一期
8、工程用了( )个月。练习:1.(补充练习)浙江省衢州市常山“天子牌胡柚为了能提前采收,抢占市场,需要给胡柚套袋以更好地吸收光能.已知一个果农一天能完成1200只胡柚的套袋工作,现在n个果农完成m个胡柚的套袋工作需要( )天.2。(书P60随堂练习2)把甲、乙两种饮料按质量比x:y混合在一起,可以调制成一种混合饮料。调制1千克这种混合饮料需多少甲种饮料?(四)深化拓展把下列各式写成分式,并试着赋予它实际意义1.1a 2。(v1t1+v2t2)(t1+t2) 能解释一些简单代数式的实际背景或几何意义是新课标中的明确要求。“赋予实际意义”对学生是个挑战,可以激发他们的思维和兴趣,活动过程中教师不仅注
9、重学生是否给出了解释,更应关注学生是否进行了思考.提供的两个分式是初中阶段常用的模型。第一个可以与倒数、工作效率、等分相联系,学生比较熟悉,应该可以通过独立思考得出;第二个分式可以联想到平均速度、平均售价、加权平均数的求法等问题,但学生相对陌生,教师可以鼓励学生相互合作交流,也可以适当提示分析。通过这样的逆向思维,可以更好地发展学生的数感、符号感,培养学生的数学意识、创造能力。(五)小结巩固 1。小结(1)谈一谈:你这一节课有什么收获?(知识、方法、情感)(2)课堂评价(评价表见附表) “谈一谈”先让每个学生在组内交流,然后派小组代表作答,有助于学生概括能力、表达能力的提高。课堂中通过学生自评
10、、互评,可以使学生全面地了解自己的学习过程,感受自己的成长与进步,这不仅有利于培养学生的自信心,也为教师全面了解学生的学习状况、改进教学、实施因材施教提供了重要依据。考虑到学生的个体差异,为更好的促使每一个学生得到不同的发展,同时促进学生对自己的学习进行反思,在课外作业的布置上我安排如下: 2.课后作业16.1。2 分式的基本性质一、教学目标1使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形2通过分式的恒等变形提高学生的运算能力3渗透类比转化的数学思想方法二、教学重点和难点1重点:使学生理解并掌握分式的基本性质,这是学好本章的关键2难点:灵活运用分式的基本性质和变号
11、法则进行分式的恒等变形三、教学方法分组讨论四、教学手段幻灯片五、教学过程(一)复习提问1分式的定义?2分数的基本性质?有什么用途?(二)新课1类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c0?解:c0,学生口答,教师设疑:为什么题目未给x0的条件?(引导学生学会分析题目中的隐含条件)解:x0,学生口答解:z0,例2 填空:把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据练习1:化简下列分式(约分)(
12、1) (2) (3)教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分.问:分式约分的依据是什么?分式的基本性质在化简分式 时,小颖和小明的做法出现了分歧:小颖: 小明:你对他们俩的解法有何看法?说说看! 教师指出:一般约分要彻底, 使分子、分母没有公因式. 彻底约分后的分式叫最简分式。练习2(通分):把各分式化成相同分母的分式叫做分式的通分。(1) 与 (2) 与 解:(1)最简公分母是 (三)课堂小结1分式的基本性质2性质中的m可代表任何非零整式3注意挖掘题目中的隐含条件4利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便
13、利条件七、板书设计一、选一选(请将唯一正确答案的代号填入题后括号内)1下列各式中与分式的值相等的是( )。(A) (B) (C) (D)2如果分式的值为零,那么x应为( ).(A)1 (B)1 (C)1 (D)03下列各式的变形:;;其中正确的是( ).(A) (B) (C) (D)4计算的结果是( ).(A)x+1 (B)x4 (C)x-4 (D)4x5分式的最简公分母是( )。(A)24a2b3 (B)24ab2 (C)12ab2 (D)12a2b36如果分式 ,那么的值为( )。(A)1 (B)1 (C)2 (D)-27已知实数a,b满足ab-a-2b+2=0,那么的值等于( ).(A)
14、 (B) (C) (D)8如果把分式中的x和y都扩大3倍,那么分式的值( )。(A)扩大3倍 (B)不变 (C)缩小3倍 (D)缩小6倍二、填一填9在代数式 中,分式有 个10当x=时,分式的值为011已知,则M=12不改变分式的值,使分子、分母首项为正,则 =13化简:14已知有意义,且成立,则x的值不等于 15计算:= 三、做一做16约分(1) (2)。17通分(1)与; (2)与。18已知,求的值19计算:.16。2。1 分式的乘除(1)教学目标(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题(二)过程与方法目标经历探索分式的乘除运算法
15、则的过程,并能结合具体情境说明其合理性(三)情感与价值目标教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练教学重点和难点重点是掌握分式的乘除运算难点是分子、分母为多项式的分式乘除法运算教学方法小组合作交流教学过程1、情境导入问题1 一个长方体容器的容积为V,底面的长为a宽为b,当容器内的水占容积的 时,水高多少?长方体容器的高为 ,水高为 。问题2 大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是 公顷/天,小拖拉机的工作效率是 公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的( )倍. 观察下列运
16、算:猜一猜与同伴交流。2、解读探究经观察、类比不难发现由学生自己归纳总结出分式乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用符号语言表达:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用符号语言表达:例1计算 注意:分式运算的结果通常要化成最简分式或整式例2计算小结:分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分做一做:通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好
17、.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都d,已知球的体积公式为(其中R为球的半径,)那么(1) 西瓜瓤与整个西瓜的体积各是多少?(2) 西瓜瓤与整个西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?3、课堂练习 4、课堂小结:通过本节课的学习,你学到了哪些知识和方法?16.2.1 分式的乘除(2) 一、教学过程(一)复习提问1分式的乘除法法则2乘方的意义:(二)新课1由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳由乘方的意义 由分式的乘法法则(2)同理:2分式乘方法则:文字叙述:分式乘方是把分子、分母各自乘方3目前为止,幂的运算法则都有什么
18、?(1)amanam+n;(2) amanam-n;(3)(am)namn;(4)(ab)nanbn;4例题与练习例1 计算:小结:对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘做乘方运算要先确定符号练习:教材P。25中1、2例2 计算:(三)小结1分式的乘方法则2运算中的注意事项二、作业三、板书设计16.2.2 分式的加减(1)一、教学过程(一)复习提问1什么叫通分?2通分的关键是什么?3什么叫最简公分母?4通分的作用是什么?(引出新课)(二)新课1同分母的分式加减法由学生类比同分母分数加减法小结同分母分式加减法法则,训练学生使用数学语言文字叙述:同分母的分式相
19、加减,分母不变,把分子相加减2由学生小结异分母的分式加减法法则文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减例1 计算:小结:(1)注意分数线有括号的作用,分子相加减时,要注意添括号(2)把分子相加减后,如果所得结果不是最简分式,要约分例2 计算:请学生分析:(1)分母是否相同?(2)如何把分母化为相同的?小结:注意符号问题例3 计算:由学生分析解法:通分;加减请学生观察题目特点,通过讨论,得到最简洁的解法(三)课堂小结1同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号2对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母
20、为1的分式,以便通分3异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化4作为最后结果,如果是分式则应该是最简分式(四)课堂练习教材P。831、2、3(1)、(3)、(5)学生板演,并相互纠错二、作业三、板书设计16.2.2分式的加减(2) 一、教学过程(一)复习提问分式加减法法则(二)新课分式混合运算例1 计算:解:小结:1对于混合运算,一般应按运算顺序,有括号先做括号中的运算,若利用乘法对加法的分配律,有时可简化运算,而合理简捷的运算途径是我们始终提倡和追求的2对每一步变形,均应为后边运算打好基础,并为后边运算的简捷合理提供条件可以
21、说,这是运算能力的一种体现3当通分熟练之后,有些步骤可以同时进行4注意约分时的符号问题例2 计算:由学生板演解:=a1解:解:(三)练习教材P。22中1、2二、作业三、板书设计16.3 分式方程(1) 一、教学目标1使学生理解分式方程的意义2使学生掌握可化为一元一次方程的分式方程的一般解法3了解解分式方程解的检验方法4在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧5通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想二、教学
22、重点和难点1教学重点:(1)可化为一元一次方程的分式方程的解法(2)分式方程转化为整式方程的方法及其中的转化思想2教学难点:检验分式方程解的原因3疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根让学生在学习中讨论从而理解、掌握三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法四、教学手段演示法和同学练习相结合,以练习为主五、教学过程(一)复习及引入新课1提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程使方程两边相等的未知数的值,叫做方程的
23、解解:(1)当x=0时,右边=0,左边=右边,这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程(二)新课板书课题:板书:分式方程的定义分母里含有未知数的方程叫分式方程以前学过的方程都是整式方程练习:判断下列各式哪个是分式方程在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程先由同学讨论如何解这个方程在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x2x+2=5+xx=3如果我们想检验一下
24、这种方法,就需要检验一下所求出的数是不是方程的解检验:把x=3代入原方程左边=右边x=3是原方程的解(三) 应用一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20v)千米/时,逆流航行的速度为(20v)千米/时,顺流航行100千米所用的时间为小时,逆流航行60千米所用的时间为小时。可列方程解方程得:v5检验:v5为方程的解。所以水流速度为5千米/时.(四)总结解分式方程的一般步骤:1在方程的两边都乘以最简公分母,约去分母,化为整式方程2解
25、这个方程3把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去(五)练习补充练习:解1:方程两边同乘x(x2),5(x2)=7x5x10=7x2x=10x=5检验:把x=5代入最简公分母x(x2)0,x=5是原方程的解方程两边同乘最简公分母(x-2),1=x13(x-2) (3这项不要忘乘)1=x13x+62x=4x=2检验:把x=2代入最简公分母(x-2)=0,原方程无解六、作业七、板书设计16.3 分式方程(2)教学目标:1、使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程。2、使学生检验解的原因,知道解分式方程须验根并掌握
26、验根的方法重点难点:1. 了解分式方程必须验根的原因;2. 培养学生自主探究的意识,提高学生观察能力和分析能力。教学过程:一复习引入解方程:(1) 解: 方程两边同乘以 ,得 检验:把x=5代入 x-5,得x50所以,x=5是原方程的解.(2)解:方程两边同乘以 ,得 , 检验:把x=2代入 x24,得x24=0。所以,原方程无解.思考:上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢?学生活动:小组讨论后总结二总结(1)为什么要检验根?在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产
27、生不适合原分式方程的解(或根)。对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求。如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,则不是原方程的解.(2)验根的方法一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解。三应用例1 解方程解:方程两边同乘x(x3),得 2x3x9解得 x9检验:
28、x9时 x(x3)0,9是原分式方程的解。例2 解方程 解:方程两边同乘(x1)(x2),得 x(x2)(x1)(x2)3化简,得 x23解得 x1检验:x1时(x1)(x2)0,1不是原分式方程的解,原分式方程无解。四随堂练习课本P35 五课时小结解分式方程的一般步骤如下:16.3 分式方程(3)一、教学过程(一)复习提问1解分式方程的步骤(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根2列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答3由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?
29、在学生讨论的基础上,教师归纳总结基本上有五种:(1)行程问题:基本公式:路程=速度时间而行程问题中又分相遇问题、追及问题(2)数字问题在数字问题中要掌握十进制数的表示法(3)工程问题基本公式:工作量=工时工效 (4)顺水逆水问题v顺水=v静水+v水v逆水=v静水v水(二)新课例3两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快?分析:甲队一个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队半个月完成总工程的,两队半个月完成总工程的.等量关系为:甲、乙两个工程
30、总量总工程量则有1(教师板书解答、检验过程)例4:从2004年5月起某列列车平均提速v千米/时。用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?分析:这里的字母v,s表示已知数据,设提速前的平均速度为x千米/时,则提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为(xv)千米/时,提速后列车行驶(s50)千米所用 的时间为小时。等量关系:提速前行驶50千米所用的时间提速后行驶(s50)千米所用的时间列方程得:(教师板书解答、检验过程)(三)课堂练习课本P37 1。2补充练习:1、乙分别从相距36千米的A、B两地同时相向而行甲从A出发到1千
31、米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度根据题意,得解得 x=4。5经检验,x=4。5是这方程的解答:甲速度为5千米/小时,乙速度为4。5千米/小时(四)小结对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系对于我们常见的几种类型题我们要熟悉它们的基本关系式二、作业 分式方程疑难分析1一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验,将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式
32、方程的解2分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系式的代数式是分式而已一般地,列分式方程解应用题的步骤:(1)审题,理解题意;(2)设未知数;(3)找出相等关系;(4)解这个分式方程;(5)检验,看方程的解是否满足方程和符合题意;(6)写出答案例题选讲例1 解下列方程:(1) ;(2).解:(1)原方程可变为:(x+2)(x3)=(x+2)(x+3) x2-x-6=x2+5x+6 6x=-12 x=2检验:当x=-2时,公分母(x+3)(x-3)=50。原方程的解为x=-2。(2)原方程可变为:,方程两边同乘以2x-
33、5得:x5-(2x5)=0解这个整式方程得:x=0检验:把x=0代入最简公分母:2x5=5 0.x=0是原方程的根。评注:检验是解分式方程不可缺少的一步,在检验时,只需把整式方程的解代入最简公分母判定它是否为零例2 A、B两位采购员同去一家饲料公司购买两次饲料,两次饲料的价格有变化,但两位采购员的购贷方式不同,其中,采购员A每购买1000千克,购贷员B每次用去800元,而不管购买饲料多少,问选用谁的购贷方式合算?解:设两次购买的饲料单价分别为每1千克m元和n元(m0,n0,mn),购货员A两次购买饲料的平均单价为(元千克)购货员B两次购买饲料的平均单价为(元千克)而0。也就是说,购货员A所购饲
34、料的平均单价高于购货员B所购饲料的平均单价,所以选用购货员B的购买方式合算评注:此例告诉我们,学会应用数学知识去处理日常生活中的经济问题,可以帮助我们获得较好的经济收益例3:一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出水量是升的,第3次倒出水量是升的,第4次倒出水量是升的第n次倒出水量是升的按照这种倒水的方法,这1升水经多少次可以倒完?解:倒n次水的总倒水量为根据分式的减法法则:反过来有利用可以把改写成合并中的相反数,得,即倒n次水的总倒水量为:=(升)评注:你可能会想到通过实验探寻问题的答案,但是实验中要精确地测量倒出水量,当倒出水量很小时测量的难度非常大,我们能否用
35、数学方法替代实验解决这个问题呢?可以发现,按这种方法倒水,随着倒水次数n的不断增加,总倒水量也不断增加,然而,不论倒水次数n有多大,总倒水量总小于1,因此容器中的1升水是倒不完的,这样,我们就用数学方法分析解决了上面的问题基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇,若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的( ).(A) (B) (C) (D)2要把分式方程化成整式方程,方程两边需要同时乘以( ).(A)2x4 (B) x (C)2(x2) (D)2x(x-2)3方程的解是( ).(A)1 (B)1 (C)1
36、 (D)04把分式方程的两边同时乘以(x2),约去分母得( )。(A)1-(1-x)=1 (B)1+(1-x)=1(C)1-(1-x)=x2 (D)1+(1x)=x25某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务,设原计划每天固沙造林x公顷,根据题意列方程正确的是( )。(A) (B)(C) (D)二、填一填6李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书解题方案设李明原计划平均每天读书x页,用含x的代数式表示:(1)李明原计划读完这本书需用天;(2)改变计划
37、时,已读了页,还剩页;(3)读了5天后,每天多读5页,读完剩余部分还需天;(4)根据问题中的相等关系,列出相应方程 7一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f满足关系式:.若f=6厘米v=8厘米,则物距u=厘米8已知若(a、b都是整数),则a+b的最小值是9已知,则10已知,则分式的值为11某商店经销一种商品,由于进货价降低了64,使得利润提高了8%,那么原来经销这种商品的利润率是%三、做一做12解方程(1);(2)。13观察图示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律: (1) 写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示; (2)猜想并
38、写出与第n个图形相对应的等式14阅读下面对话:小红妈:“售货员,请帮我买些梨” 售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1。5倍,苹果的重量比梨轻2.5千克试根据上面对话和小红妈的发现,分别求出梨和苹果的单价四、试一试15甲工人与乙工人生产同一种零件,甲每小时比乙多生产8个,现在要求甲生产出168个这种零件,要求乙生产出144个这种零件,他们两人谁能先完成任务呢?16 3 分式方程一、1.C 2。D 3。D 4.D 5.B二、6.(1);(2)5x ,2005x;(3);(4) 7.24 8。19 9。 10. 11.17三、12.(1)3;(2)无解 13.(1);(2)14。梨的单价为4元/千克,苹果的单价为6元/千克。四、当乙每小时生产的零件多余48个,则乙先完成任务,如果乙每小时恰好生产48个零件,则两人同时完成任务;如果乙每小时生产的零件少于48个,则甲先完成任务。