收藏 分销(赏)

专题02因动点产生的等腰三角形问题-2018届突.doc

上传人:天**** 文档编号:2565863 上传时间:2024-06-01 格式:DOC 页数:33 大小:2.27MB
下载 相关 举报
专题02因动点产生的等腰三角形问题-2018届突.doc_第1页
第1页 / 共33页
专题02因动点产生的等腰三角形问题-2018届突.doc_第2页
第2页 / 共33页
专题02因动点产生的等腰三角形问题-2018届突.doc_第3页
第3页 / 共33页
专题02因动点产生的等腰三角形问题-2018届突.doc_第4页
第4页 / 共33页
专题02因动点产生的等腰三角形问题-2018届突.doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、【类型综述】数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.【方法揭秘】我们先回顾两个画图问题:1已知线段

2、AB5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2已知线段AB6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外在讨论等腰三角形的存在性问题时,一般都要先分类如果ABC是等腰三角形,那么存在ABAC,BABC,CACB三种情况解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快几何法一般分三步:分类、画图、计算哪些题目适合用几何法呢?如果ABC的A(的余弦值)是确定的,夹A的两边AB和A

3、C可以用含x的式子表示出来,那么就用几何法如图1,如果ABAC,直接列方程;如图2,如果BABC,那么;如图3,如果CACB,那么代数法一般也分三步:罗列三边长,分类列方程,解方程并检验如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来图1 图2 图3 【典例分析】例1 如图1,在RtABC中,A90,AB6,AC8,点D为边BC的中点,DEBC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且PDQ90(1)求ED、EC的长;(2)若BP2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若P

4、DF为等腰三角形,求BP的长图1 备用图思路点拨1第(2)题BP2分两种情况2解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系3第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ满分解答图2 图3 图4如图3,当BP2,P在BM上时,PM1此时所以如图4,当BP2,P在MB的延长线上时,PM5此时所以如图6,当QCQD时,由,可得所以QNCNCQ(如图2所示)此时所以不存在DPDF的情况这是因为DFPDQPDPQ(如图5,图6所示)图5 图6考点伸展如图6,当CDQ是等腰三角形时,根据等角的余角相等,可以得到BDP也是等腰三角形,PBPD在

5、BDP中可以直接求解学科网例2如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 思路点拨1第(2)题是典型的“牛喝水”问题,点P在线段BC上时PAC的周长最小2第(3)题分三种情况列方程讨论等腰三角形的存在性满分解答所以点P的坐标为(1, 2)图2(3)点M的坐标为(1, 1)、(1,)、(1,)或(1,0)考点伸展第(3)题

6、的解题过程是这样的:设点M的坐标为(1,m)在MAC中,AC210,MC21(m3)2,MA24m2如图3,当MAMC时,MA2MC2解方程4m21(m3)2,得m1此时点M的坐标为(1, 1)如图4,当AMAC时,AM2AC2解方程4m210,得此时点M的坐标为(1,)或(1,)如图5,当CMCA时,CM2CA2解方程1(m3)210,得m0或6当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0)图3 图4 图5例3 如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物

7、线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由图1思路点拨1用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验2本题中等腰三角形的角度特殊,三种情况的点P重合在一起满分解答(3)抛物线的对称轴是直线x2,设点P的坐标为(2, y)当OPOB4时,OP216所以4+y216解得当P在时,B、O、P三点共线(如图2)当BPBO4时,BP216所以解得当PBPO时,PB2PO2所以解得综合、,点P的坐标为,如图2所示图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D,那么D

8、OA与OAB是两个相似的等腰三角形由,得抛物线的顶点为因此所以DOA30,ODA120例4 如图1,已知一次函数yx7与正比例函数 的图象交于点A,且与x轴交于点B(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线l/y轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直线l都停止运动在运动过程中,设动点P运动的时间为t秒当t为何值时,以A、P、R为顶点的三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t

9、的值;若不存在,请说明理由思路点拨1把图1复制若干个,在每一个图形中解决一个问题2求APR的面积等于8,按照点P的位置分两种情况讨论事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能3讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况满分解答图2 图3 图4我们先讨论P在OC上运动时的情形,0t4如图1,在AOB中,B45,AOB45,OB7,所以OBAB因此OABAOBB如图4,点P由O向C运动的过程中,OPBRRQ,所以PQ/x轴因此AQP45保持不变,PAQ越来越大,所以只存在APQAQP的情况此时点A在PQ的垂直平分线上,OR

10、2CA6所以BR1,t1我们再来讨论P在CA上运动时的情形,4t7在APQ中, 为定值,如图5,当APAQ时,解方程,得如图6,当QPQA时,点Q在PA的垂直平分线上,AP2(OROP)解方程,得图5 图6 图7考点伸展当P在CA上,QPQA时,也可以用来求解学科网例5 如图1,在ABC中,ACB90,BAC60,点E是BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DHAC,垂足为H,连接EF,HF(1)如图1,若点H是AC的中点,AC,求AB、BD的长;(2)如图1,求证:HFEF(3)如图2,连接CF、CE,猜想:CEF是否是等边

11、三角形?若是,请证明;若不是,请说明理由图1 图2思路点拨1把图形中所有30的角都标注出来,便于寻找等角和等边2中点F有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了满分解答图3 图4 图5(3)如图5,作FMAB于M,联结CM由FM/DA,F是DB的中点,得M是AB的中点因此FM,ACM是等边三角形又因为AE,所以FMEA又因为CMCA,CMFCAE30,所以CMFCAE所以MCFACE,CFCE所以ECFACM60所以CEF是等边三角形考点伸展我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉如图6,如图7,当点F落在BC边上时,点H与点C重合图6 图7如图8,图9,点E落在

12、BC边上如图10,图11,等腰梯形ABEC图8 图9 图10 图11例6如图1,已知RtABC中,C90,AC8,BC6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从ABC方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒(1)在运动过程中,求P、Q两点间距离的最大值;(2)经过t秒的运动,求ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得PQC为等腰三角形若存在,求出此时的t值,若不存在,请说明理由(,结果保留一位小数)图1思路点拨1过点B作QP的平行线交AC于D,那么BD的长就是PQ的最大值2线段PQ扫过

13、的面积S要分两种情况讨论,点Q分别在AB、BC上3等腰三角形PQC分三种情况讨论,先罗列三边长满分解答图2 图3 图4(2)如图2,当点Q在AB上时,0t5,SABD15由AQPABD,得所以SSAQP如图3,当点Q在BC上时,5t8,SABC24因为SCQP,所以SSABCSCQP24(t8)2t216t40(3)如图3,当点Q在BC上时,CQ2CP,C90,所以PQC不可能成为等腰三角形当点Q在AB上时,我们先用t表示PQC的三边长:易知CP8t如图2,由QP/BD,得,即所以如图4,作QHAC于H在RtAQH中,QHAQ sinA,AH在RtCQH中,由勾股定理,得CQ图5 图6 图7考

14、点伸展第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法:如图8,当点Q在AB上时,PQ当Q与B重合时,PQ最大,此时t5,PQ的最大值为如图9,当点Q在BC上时,PQ当Q与B重合时,PQ最大,此时t5,PQ的最大值为综上所述,PQ的最大值为图8 图9【变式训练】1(2017四川省达州市)已知函数的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB下列结论:若点M1(x1,y1),M2(x2,y2)在图象上,且x1x20,则y1y2;当点P坐标为(0,3)时,AOB是等腰三角形;无论点P在什么位置,始终有SAOB=7.5,AP=4BP;当点

15、P移动到使AOB=90时,点A的坐标为(,)其中正确的结论个数为()A1B2C3D4【答案】C正确设P(0,m),则B(,m),A(,m),PB=,PA=,PA=4PB,SAOB=SOPB+SOPA=7.5,故正确正确设P(0,m),则B(,m),A(,m),PB=,PA=,OP=m,AOB=90,OPB=OPA=90,BOP+AOP=90,AOP+OPA=90,BOP=OAP,OPBAPO,OP2=PBPA,m2=(),m4=36,m0,m=,A(,),故正确,正确,故选C考点:1反比例函数综合题;2综合题学科网2(2017浙江省绍兴市)如图,AOB=45,点M、N在边OA上,OM=x,ON

16、=x+4,点P是边OB上的点若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是 【答案】x=0或x= 或 当0x4时,如下图,圆N与OB相切时,NP2=MN=4,且NP2OB,此时MP3=4,则OM=ON-MN= NP2-4= 当MD=MN=4时,圆M与OB只有一个交点,此时OM=MD=,故4x与OB有两个交点P2和P3,故答案为:x=0或x=或4x考点:1相交两圆的性质;2分类讨论;3综合题3(2017四川省南充市)如图1,已知二次函数(a、b、c为常数,a0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为,直线l的解析式为y=x(1)求二次函数的解析式;(2)直

17、线l沿x轴向右平移,得直线l,l与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CEx轴于点E,把BCE沿直线l折叠,当点E恰好落在抛物线上点E时(图2),求直线l的解析式;(3)在(2)的条件下,l与y轴交于点N,把BON绕点O逆时针旋转135得到BON,P为l上的动点,当PBN为等腰三角形时,求符合条件的点P的坐标【答案】(1);(2)y=x3;(3)P坐标为(0,3)或(,)或(,)(3)分两种情形求解即可当P1与N重合时,P1BN是等腰三角形,此时P1(0,3)当N=NB时,设P(m,m3),列出方程解方程即可;试题解析:(1)由题意抛物线的顶点坐标为(2,),设抛物线的解

18、析式为,把(0,0)代入得到a=,抛物线的解析式为,即(2)如图1中,设E(m,0),则C(m,),B(,0),E在抛物线上,E、B关于对称轴对称, =2,解得m=1或6(舍弃),B(3,0),C(1,2),直线l的解析式为y=x3考点:1二次函数综合题;2几何变换综合题;3分类讨论;4压轴题学科网4.(2017四川省广安市)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M

19、、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由【答案】(1),B点坐标为(3,0);(2);【解析】试题分析:(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;由题意可知OB=OA,故当BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ

20、和BQ的长,分别得到关于t的方程,可求得t的值A(0,3),B(3,0),OA=OB=3,且可求得直线AB解析式为y=x+3,当t0时,OQOB,当BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,Q(2t,2t+3),OQ= =,BQ=|2t3|,又由题意可知0t1,当OB=QB时,则有|2t3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t3|,解得t=;综上可知当t的值为或时,BOQ为等腰三角形考点:1二次函数综合题;2动点型;3分类讨论;4压轴题5. (2017四川省眉山市)如图,抛物线与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M

21、(1,)是抛物线上另一点(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NHAC交抛物线的对称轴于H点设ON=t,ONH的面积为S,求S与t之间的函数关系式【答案】(1) ;(2)P点的坐标1(0,2)或(0,)或(0,)或(0,);(3)(3)过H作HGOA于G,设HN交Y轴于M,根据平行线分线段成比例定理得到OM=,求得抛物线的对称轴为直线x= =,得到OG=,求得GN=t,根据相似三角形的性质得到HG=,于是得到结论试题解析:(1)把A(3,0)

22、,且M(1,)代入得:,解得:;(2)在中,当x=0时y=2,C(0,2),OC=2,如图,设P(0,m),则PC=m+2,OA=3,AC=,分三种情况:当PA=CA时,则OP1=OC=2,P1(0,2);当PC=CA=时,即m+2=,m=2,P2(0,2);当PC=PA时,点P在AC的垂直平分线上,则AOCP3EC,P3C=,m=,P3(0,),当PC=CA=时,m=2,P4(0,2),综上所述,P点的坐标1(0,2)或(0,)或(0,)或(0,);(3)过H作HGOA于G,设HN交Y轴于M,NHAC,OM=,抛物线的对称轴为直线x= =,OG=,GN=t,GHOC,NGHNOM,即,HG=

23、,S=ONGH=t(t)=t2t(0t3) 考点:二次函数综合题学科网6. (2017广东省)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DEDB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF(1)填空:点B的坐标为 ;(2)是否存在这样的点D,使得DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)求证:=;设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用的结论),并求出y的最小值【答案】(1)(,2);(2)AD的值为2或;(3)

24、证明见解析;,当x=3时,y有最小值(3)由(2)可知,B、D、E、C四点共圆,推出DBC=DCE=30,由此即可解决问题;作DHAB于H想办法用x表示BD、DE的长,构建二次函数即可解决问题;试题解析:(1)四边形AOCB是矩形,BC=OA=2,OC=AB=,BCO=BAO=90,B(,2)故答案为:(,2)(2)存在理由如下:连接BE,取BE的中点K,连接DK、KCBDE=BCE=90,KD=KB=KE=KC,B、D、E、C四点共圆,DBC=DCE,EDC=EBC,tanACO=,ACO=30,ACB=60(3)由(2)可知,B、D、E、C四点共圆,DBC=DCE=30,tanDBE=,=

25、如图2中,作DHAB于H在RtADH中,AD=x,DAH=ACO=30,DH=AD=x,AH=,BH=,在RtBDH中,BD=,DE=BD=,矩形BDEF的面积为y= =,即,0,当x=3时,y有最小值考点:1相似形综合题;2最值问题;3二次函数的最值;4动点型;5存在型;6分类讨论;7压轴题7. (2017广西四市)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(

26、3)证明:当直线l绕点D旋转时,均为定值,并求出该定值【答案】(1)a=,A(,0),抛物线的对称轴为x=;(2)点P的坐标为(,2)或(,0)或(,4);(3)试题解析:(1)C(0,3),9a=3,解得:a=令y=0得:,a0,解得:x=或x=,点A的坐标为(,0),B(,0),抛物线的对称轴为x=(2)OA=,OC=3,tanCAO=,CAO=60AE为BAC的平分线,DAO=30,DO=AO=1,点D的坐标为(0,1)设点P的坐标为(,a)依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a1)2当AD=PA时,4=12+a2,方程无解当AD=DP时,4=3+(a

27、1)2,解得a=2或a=0,点P的坐标为(,2)或(,0)当AP=DP时,12+a2=3+(a1)2,解得a=4,点P的坐标为(,4)综上所述,点P的坐标为(,2)或(,0)或(,4)MAG=60,AGM=90,AM=2AG=,= = =考点:1二次函数综合题;2旋转的性质;3定值问题;4动点型;5分类讨论;6压轴题8. (2017重庆市B卷)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE当PCE的面积最大时,连接CD,CB,

28、点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线沿x轴正方向平移得到新抛物线y,y经过点D,y的顶点为点F在新抛物线y的对称轴上,是否存在一点Q,使得FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由【答案】(1);(2)3;(3)Q的坐标为(3,)或(3,)或(3,)或(3,)(2)设直线CE的解析式为y=mx,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PFy轴,交CE与点F设点P的坐标为(x,),则点F(x,),则FP=由三角形的面积公式得到EPC的面积=,利用二次函数的性质

29、可求得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M然后利用轴对称的性质可得到点G和点H的坐标,当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH;(2)设直线CE的解析式为y=mx,将点E的坐标代入得:4m=,解得:m=,直线CE的解析式为过点P作PFy轴,交CE与点FK是CB的中点,k(,)点H与点K关于CP对称,点H的坐标为(,)点G与点K关于CD对称,点G(0,0),KM+MN+NK=MH+MN+GN当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH,GH= =3,KM+MN+NK的最小值为3(3)

30、如图3所示:考点:1二次函数综合题;2最值问题;3分类讨论;4存在型;5压轴题学科网9. (2017湖南张家界第23题)已知抛物线c1的顶点为A(1,4),与y轴的交点为D(0,3)(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n试结合图形回答:当n为何值时,l2与c1和c2共有:两个交点;三个交点;四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使PAB为等腰三角形【答案】(1);(2);(3)4;3;3n4或n3;(4)(5,0)或(3,0)或(3+,0)或(1

31、,0)(4)求得B(3,0),得到OB=3,根据勾股定理得到AB的长,当AP=AB,当AB=BP=时,当AP=PB时,点P在AB的垂直平分线上,于是得到结论试题解析:(1)抛物线c1的顶点为A(1,4),设抛物线c1的解析式为,把D(0,3)代入得3=a+4,a=1,抛物线c1的解析式为:,即;(2)解得,直线l1:y=x+m与c1仅有唯一的交点,=94m+12=0,m=;(4)如图,若c2与x轴正半轴交于B,B(3,0),OB=3,AB= =:当AP=AB=时,PB=8,P1(5,0);当AB=BP=时,P2(3,0)或P3(3+,0);当AP=PB时,点P在AB的垂直平分线上,PA=PB=4,P4(1,0)综上所述,点P的坐标为(5,0)或(3,0)或(3+,0)或(1,0)时,PAB为等腰三角形考点:二次函数综合题;分类讨论;轴对称的性质;压轴题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服