1、第一章 轴对称与轴对称图形复习课学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。3.掌握线段的垂直平分线、角的平分线的性质及应用。4.理解等腰三角形的性质并能够简单应用。5.能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏和设计简单的轴对称图案。重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用。难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用,镜面对称下图形的变化。导学过程: 课前预习与导学
2、欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形: 如果一个图形沿着一条直线 ,两侧的图形能够 ,这个图形就是轴对称图形。折痕所在的这条直线叫做_。图形上能够重合的点叫 。分别在上面图形中画出它们的对称轴。2.轴对称:欣赏下面几幅图片,并完成问题。如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成 ,这条直线叫做 。两个图形中的对应点叫 。如图,写出一对对称点是 。3.轴对称的性质上图中点和的连线与直线MN有什么样的关系?同理,点和,点和的连线也被直线MN ,图中相等的线段有: ,相等的角有: 。可以概括为:如果两个图形关于某条直线成轴对称,那么对
3、应点的连线被对称轴 ,对应线段 ,对应角 。4.欣赏下面的图片,完成对镜面对称的回顾。 一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?在照镜子时,镜子外的物体和镜子内的成像 不变, 发生相反变化。5.线段垂直平分线的性质线段垂直平分线上的点到 的距离相等。6.角的平分线的性质角的平分线的性质上的点到 的距离相等。7.等腰三角形的性质等腰三角形是 图形,它的对称轴是 ,等腰三角形的两个底角 , 互相重合。等边三角形的各角都是 ,有 条对称轴。课上探究激情导入:送一句话给全体同学对称是一种思想,通过它,人们毕生追求,并创造次序、美丽和完善 -赫尔曼外尔一、独立完成 发现问题(自主学
4、习)1.自主梳理(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是 个图形的位置关系。而轴对称图形是指 个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的 个图形。联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。(二)线段垂直平分线的性质应用:三角形三边垂直平分线的交点到 距离相等。(三)角的平分线的性质应用:三角形三个内角平分线的交点到 距离相等。(四)等腰三角形的三线合一性是指: 。2.自我诊断:(1)下列说法中,正确的个数是( )轴对
5、称图形只有一条对称轴,轴对称图形的对称轴是一条线段,两个图形成轴对称,这两个图形是全等图形,全等的两个图形一定成轴对称,轴对称图形是指一个图形,而轴对称是指两个图形而言。(A)1个(B)2个(C)3个(D)4个(2)轴对称图形的对称轴的条数( )(A)只有一条(B)2条(C)3条(D)至少一条(3)下列图形中,不是轴对称图形的是( )(A)两条相交直线 (B)线段(C)有公共端点的两条相等线段 (D)有公共端点的两条不相等线段(4)下列图案是几种名车的标志,在这几个图案中是轴对称图形的共有( )丰田 三菱 雪佛兰 雪铁龙 (A)1个 (B)2个 (C)3个 (D)4(5)下列图形是不是轴对称图
6、形?如果是轴对称图形的,说出对称轴的条数.(6)小强站在镜前,从镜中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是_。(7)等腰三角形两腰分别为3和7,那么它的周长为( )(A)10 (B)13 (C)17 (D)13或17(8)到三角形三个顶点距离相等的是( )(A)三边高线的交点 (B)三条中线的交点(C)三条垂直平分线的交点(D)三条内角平分线的交点(9)等腰ABC中A=80,若A是顶角,则B=_;若B是顶角,则B=_;若C是顶角,则B=_(10)ABC中,AB=AC,点D在AC边上,且 BD=BC=AD,则A的度数为( )(A)300 (B)360 (C)450 (
7、D)700(11)如果ABC与A/B/C/关于直线MN对称,且A500,B/700,那么C/ _。自我总结:你对以上问题感到还有疑惑的是: ,是哪个知识点没有掌握好呢? 。二、合作探究 解决问题小组合作解决以下问题:(12)如图:由四个小正方形组成的图形中,请你添加一个小正方形,使它成为一个轴对称图形(13)画出ABC关于直线l的轴对称图形ABC(14)如图,A、B是安达公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。(15)哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称性。
8、A B C D E F G H I J K L M N O P Q R S T U V W X Y Z(16)数的运算中会有一些有趣的对称形式,如12231=13221,仿照这一形式,写出下列等式,并演算:12462= ,18891= 。自我反思在以上问题中,你对那个问题巩固的最扎实?那个问题你是接受了同学的帮助?你有哪些新的收获? 。三、精讲点拨 完善问题(17)在矩形ABCD中,将ABC绕AC对折至AEC位置,CE与AD交于点F,如图.试说明EF=DF.(18)如图,己知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=10cm,A=49,求BCE的周长和EBC
9、的度数.我的收获:说明两条线段相等可以运用的方法主要是:1. 2. 。四、有效训练 归纳提升(19)在ABC中,AB=AC,BC=5cm,作AB的中垂线交另一腰AC于D,连结BD,如果BCD的周长是17cm,则腰长为( )(A)12cm (B)6cm (C)7cm (D)5cm(20)已知AOB=400,OM平分AOB,MAOA于A,MBOB于B,则MAB的度数为( )(A)500 (B)400 (C)300 (D)200(21)ABC中,BC10,边BC的垂直平分线分别交AB、AC于点E、F,BE7,BCE的周长为_。(22)已知ABC中BAC=140,AB、AC的垂直平分线分别交BC于E、
10、F,你能求出EAF的度数吗?(24)已知直线及其两侧两点A、B,如图所示.在直线上求一点P,使PA=PB;在直线上求一点Q,使平分AQB. (25)在课外活动中,小明发明了一个在直角三角形中画锐角的平分线的方法,他的方法是:如图所示,在斜边AB上取一点E,使BE=BC,过点E作EDAB,交AC于D,那么BD就是ABC的平分线,你认为对吗?为什么?课末反思本节课我的收获主要有: 。我还在 方面存在不足,我打算 弥补。课末检测1.下列轴对称图形中,对称轴最多的是( )(A)等腰直角三角形 (B)线段 (C)正方形 (D)圆2.下列图形中不是轴对称图形的有( )(A)1个 (B)2个 (C)3个 (
11、D)4个3.以下汽车标志中,和其他三个不同的是( )(A) (B) (C) (D)4.以下国旗图案中,有一条对称轴的是( )加拿大 摩洛哥 约 旦 英 国 肯尼亚(A)2个 (B)3个 (C)4个 (D)5个5.画出下面每个轴对称图形的对称轴6.画出下图中ABC关于直线MN的轴对称图形。7.“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇(如上右图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。(保留画图痕迹,不写画法)8.在RtABC中,C=900,BD平分ABC交AC于点D,DE垂直平分线段AB,试找出图中相等的线段,并说明理由。若DE=1cm,BD=2cm,求AC的长。课外拓展:用两个圆:、,两个三角形:、和两条线段:、,拼出至少两个对称图形(画在下列方框内),并加上一句贴切诙谐解说词。解说词: 解说词: