1、排列组合二项式定理分布列检测题一、选择题1.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为( ) A. B. C. D. 2A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()A24种B60种C90种D120种3设4名学生报名参加同一时间安排的3项课外活动方案有a种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b种,则(a,b)为()A(34,34) B(43,34) C(34,43) D(A43,A43)4已知随机变量X的分布列为,则为()A B C
2、D5有外形相同的球分装三个盒子,每盒10个其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()A0.59B0.54C0.8D0.156.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率等于( ) A. B. C. D. 7.从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的和
3、为偶数的概率是( )A B C D8.从甲口袋摸出一个红球的概率是,从乙口袋中摸出一个红球的概率是,则是( )A2个球不都是红球的概率 B. 2个球都是红球的概率C至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率 9.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为( ) A B C D信号源10.右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组
4、,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( )A. B. C. D.11. 从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人1天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有()A120种 B96种 C60种 D48种12. 若,则的值为( ) A1 B-1 C0 D2二、填空题13.甲乙两市位于长江下游,根据一百多年的记录知道,一年中雨天的比例,甲为20%,乙为18%,两市同时下雨的天数占12%. 求: 乙市下雨时甲市也下雨的概率为_ 甲乙两市至少一市下雨的概率
5、为 _14有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法种15设随机变量的概率分布列为,则16若离散型随机变量的分布列为X01P4a13a2a则等于_排列组合二项式定理分布列检测题题号123456789101112选项二、填空题:本大题共4小题,每小题4分,共16分。13. 14. 15. 16. 三、解答题17.有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件求:第一次抽到次品的概率;第一次和第二次都抽到次品的概率;在第一次抽到次品的条件下,第二次抽到次品的概率.18.在奥运会射箭决赛中,参赛
6、号码为14号的四名射箭运动员参加射箭比赛。 ()通过抽签将他们安排到14号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率; ()记1号、2号射箭运动员射箭的环数为(所有取值为0,1,2,3,10)分别为、.根据教练员提供的资料,其概率分布如下表:01234567891000000.060.040.060.30.20.30.0400000.040.050.050.20.320.320.02若1,2号运动员各射箭一次,求两人中至少有一人命中9环的概率;19将4个不同的球放入4个不同的盒子内,(1) 共有几种放法?(2) 恰有一个盒子未放球,共几种放法?(3) 恰有一个盒子内有2球,共几种
7、放法?(4) 恰有两个盒子内未放球,共有几种放法?20.甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是,甲、乙、丙三人都不能通过测试的概率是,且乙通过测试的概率比丙大。()求乙、丙两人各自通过测试的概率分别是多少;()求测试结束后通过的人数的分布列。21已知的展开式中,前三项系数成等差数列( I )求;( II )求第三项的二项式系数及项的系数;( III )求含项的系数22 2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:福娃名称贝贝
8、晶晶欢欢迎迎妮妮数量12311从中随机地选取5只(I)求选取的5只恰好组成完整“奥运吉祥物”的概率;(II)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X表示所得的分数,求X的分布列参考答案一.1-5:DBCAB 6-10:ACCBD 11.C 12.A二填空题: 13. 14.15 15. 16. 三解答题:17.解:设第一次抽到次品为事件A,第二次都抽到次品为事件B. 第一次抽到次品的概率 在第一次抽到次品的条件下,第二次抽到次品的概率为18()从4名运动员中任取两名,其靶位号与参赛号相同,有种方法,另2名运动员靶位号与参赛号均不相同的方
9、法有1种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为 ()由表可知,两人各射击一次,都未击中9环的概率为P=(1-0.3)(1-0.32)=0.476至少有一人命中9环的概率为p=1-0.476=0.52419.解:(1)把球作为研究对象,事件指所有球都放完因每一只球都有四种放法,故由分步计数原理,共有44=256(种);(2)第一步是把4只球分成2,1,1三组,共有C42种放法;二步把3组球放入三个盆子中去(作全排列),有A43种;由分步计数原理,共有N=C42A43(种) (3)仔细审题,认清问题的本质“恰有一盆子内入2个球”即另三个盆子放2球,也即另外3个盆子恰有一个空盆,因此,“
10、恰有一个盆子放2球”与“恰有一个盆子不放球”是等价的 (4)先取走两个不放球的盆子,有C42种取法;其次将4球分两类放入所剩2盆;第一类均匀放入,有C42C22种放法;第二步按3,1分组放入,有C43C11A22种放法故有N=C42(C42C22+C43C11A22)=84(种)20解:()设乙、丙两人各自通过测试的概率分别是、依题意得:即 或 (舍去)所以乙、丙两人各自通过测试的概率分别是、. ()因为 ; ;所以 21. 解:( I )前三项系数为1,成等差数列,即.或(舍)( II )由知其通项公式,第三项的二项式系数为.第三项系数为( III )令,得 含项的系数为.22. 解:(I)选取的5只恰好组成完整“奥运会吉祥物”的概率P(II)X的取值为100,80,60,40X的分布列为X100806040