收藏 分销(赏)

江苏省南京市天印高级中学2022-2023学年高一数学第一学期期末教学质量检测模拟试题含解析.doc

上传人:a199****6536 文档编号:2540765 上传时间:2024-05-31 格式:DOC 页数:13 大小:813.04KB
下载 相关 举报
江苏省南京市天印高级中学2022-2023学年高一数学第一学期期末教学质量检测模拟试题含解析.doc_第1页
第1页 / 共13页
江苏省南京市天印高级中学2022-2023学年高一数学第一学期期末教学质量检测模拟试题含解析.doc_第2页
第2页 / 共13页
江苏省南京市天印高级中学2022-2023学年高一数学第一学期期末教学质量检测模拟试题含解析.doc_第3页
第3页 / 共13页
江苏省南京市天印高级中学2022-2023学年高一数学第一学期期末教学质量检测模拟试题含解析.doc_第4页
第4页 / 共13页
江苏省南京市天印高级中学2022-2023学年高一数学第一学期期末教学质量检测模拟试题含解析.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、2022-2023学年高一上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正

2、确选项填涂在答题卡上.)1已知幂函数在上单调递减,设,则( )A.B.C.D.2函数f(x)=tan的单调递增区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)3在的图象大致为()A.B.C.D.4已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5函数的部分图象如图所示,则可能是( )A.B.C.D.6四个变量y1,y2,y3,y4,随变量x变化的数据如下表:x124681012y116295581107133159y21982735656759055531447y3186421651210001728

3、y42.0003.7105.4196.4197.1297.6798.129其中关于x近似呈指数增长的变量是( )A.B.C.D.7为了得到函数的图像,只需将函数的图像( )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位8对于空间中的直线,以及平面,下列说法正确的是A.若,则B.若,则C.若 ,则D.若,则9将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A.B.C.D.10已知则当最小时的值时A.3B.3C.1D.1二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11设,则_12已知函数,则_.13如图所示,将等腰直角沿斜边上的高折成

4、一个二面角,使得那么这个二面角大小是_14函数的最大值与最小值之和等于_15已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为_.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16已知函数在上最大值为3,最小值为(1)求的解析式;(2)若,使得,求实数m的取值范围17已知平面上点,且.(1)求;(2)若点,用基底表示.18已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.19已知函数, .(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.20提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,

5、大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数(1)当0x200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时)21已知函数(其中,)图象上两相邻最高点之间距离为,且点是该函数图象上的一个最高点(1)求函数的解析式;(2)把函数的图象向右平移个单位长度

6、,得到函数的图象,若恒有,求实数的最小值.参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,此时满足在上单调递增,不合题意,当时,此时在上单调递减,所以.因为,又,所以,因为在上单调递减,所以,又因为为偶函数,所以,所以.故选:C2、B【解析】运用整体代入法,结合正切函数的单调区间可得选项.【详解】由k-2x-k+(kZ),得x(kZ),所以函数f(

7、x)=tan的单调递增区间为(kZ).故选:B.【点睛】本题考查正切函数的单调性,属于基础题.3、C【解析】先由函数为奇函数可排除A,再通过特殊值排除B、D即可.【详解】由,所以为奇函数,故排除选项A.又,则排除选项B,D故选:C4、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即pq但x为整数不一定是自然数,如x2,即qp故p是q的充分不必要条件故选:A.5、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,得到正确答案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,解得:,当时,故A正确,其他选项均不合要求.故选

8、:A6、B【解析】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,【详解】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,符合指数函数的增长特点.故选:B7、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.8、D【解析】根据空间直线和平面的位置关系对四个选项逐一排除,由此确定正确的选项【详解】对于A选项,可能异面,故A错误;对于B选项,可

9、能有,故B错误;对于C选项,的夹角不一定为90,故C错误;因为,故,因为,故,故D正确,故选D.【点睛】本小题主要考查空间两条直线的位置关系,考查直线和平面、平面和平面位置关系的判断,属于基础题.9、C【解析】函数,将其图像向右平移个单位后得到这个图像关于直线对称,即当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、B【解析】由题目已知可得:当时,的值最小故选二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据自变量取值判断使用哪一段

10、解析式求解,分别代入求解即可【详解】解:因为,所以,所以故答案为:112、7【解析】根据题意直接求解即可【详解】解:因为,所以,故答案为:713、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,即所求二面角大小是.故答案为:14、0【解析】先判断函数为奇函数,则最大值与最小值互为相反数【详解】解:根据题意,设函数的最大值为M,最小值为N,又由,则函数为奇函数,则有,则有;故答案为0【点睛】本题考查函数奇偶性,利用奇函数的性质求解是解题关键15、【解析】利用扇形的面积求

11、出扇形的半径,再带入弧长计算公式即可得出结果【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据的最值列方程组,解方程组求得,进而求得.(2)利用分离常数法,结合基本不等式求得的取值范围.【小问1详解】的开口向上,对称轴为,所以在区间上有:,即,所以.【小问2详解】依题意,使得,即,由于,当且仅当时等号成立.所以.17、(1);(2)【解析】(1)设,根据向量相等的坐标表示可得答案;(2)设,建立方程,解之可得答案【详解】解:(1)设,由点,所

12、以,又,所以,解得所以点,所以;(2)若点,所以,设,即,解得所以用基底表示18、(1)(2)或.【解析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【点睛】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.19、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可

13、求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略

14、:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.20、(1)(2)3333辆/小时【解析】(1)由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅

15、当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时21、(1)(2)最小值为4【解析】(1)由图象上两相邻最高点之间的距离为,可知周期,点是该函数图象上的一个最高点,可知,故,将点代入解析式即可得,函数解析式即可求得;(2)利用函数平移的性质即可求得平移后的函数,由恒有,可知函数在处取得最大值,即可求出实数取最小值.【小问1详解】根据题意得函数的周期为,即, 故 ,点是该函数图象上的一个最高点,即 ,将点代入函数解析式得,即,则,又,, 故.【小问2详解】函数,恒有成立,在处取得最大值,则,得,故当时,实数取最小值4.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服