1、 第222324周之作图法解题、分解质因数作图法解题专题简析:用作图的方法把应用题的数量关系提示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。在解答已知一个数或者几个数的和差、倍差及相互之间的关系,求其中一个数或者几个数问题等应用题时,我们可以抓住题中给出的数量关系,借助线段图进行分析,从而列出算式。 例题1 五(1)班的男生人数和女生人数同样多。抽去18名男生和26名女生参加合唱队后,剩下的男生人数是女生的3倍。五(1)班原有男、女生各多少人?分析 根据题意作出示意图: 从图中可以看出,由于女生比男生多抽去2618=8名去合
2、唱队,所以,剩下的男生人数是女生人数的3倍,而这8名同学正好相当于剩下女生人数的2倍,剩下的女生人数有82=4名,原来女生人数是264=30名。练习一1,两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。这两根电线原来共长多少厘米? 2,甲、乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。原来两筐水果各有多少个?3,哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元,二人的存款正好相等。哥哥原来存有多少钱? 例题2 同学们做纸花,做了36朵黄花,做的红花比黄花和紫花的总数还多12朵。红花
3、比紫花多几朵?分析 通过线段图来观察: 从图中可以看出:红花比紫花多的朵数由两部分组成,一部分是36朵,另一部分是12朵,所以,红花比紫花多3612=48朵。练习二1,奶奶家养了25只鸭子,养的鸡比鸭和鹅的总数还多10只。奶奶家养的鸡比鹅多几只?2,批发部运来一批水果,其中梨65筐,苹果比梨和香蕉的总数还多24筐。运来的香蕉比苹果少多少筐?3,期末测试中,明明的语文得了90分。数学比语文和作文的总分少70分。明明的数学比作文高多少分? 例题3 甲、乙、丙、丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍,丁组植树棵数减少一半,那么四个组植的棵数正好相同。原来四
4、个小组各植树多少棵?分析 图中实线表示四个小组实际植树的棵数: 从图中可以看出,把丙组植的棵数看作1份,甲组和乙组共植了这样的4份,丁组也植了这样的4份。因此,我们可以先求出丙组植树的棵数:45(144)=5棵,从而得出甲组植了522=8棵,乙组植了522=12棵,丁组植了54=20棵。练习三1,甲、乙、丙、丁四个数的和是100,甲数加上4,乙数减去4,丙数乘以4,丁数除以4后,四个数就正好相等。求这四个数。2,甲、乙、丙三人分113个苹果,如果把甲分得的个数减去5,乙分得的个数减去24,丙把分得的个数送给别人一半后,三人的苹果个数就相同。三人原来各分得苹果多少个?3,甲、乙、丙、丁一共做37
5、0个零件,如果把甲做的个数加10,乙做的个数减20,丙做的个数乘以2,丁做的个数除以2,四人做的零件正好相等,求乙实际做了多少个? 例题4 五(1)班全体同学做数学竞赛题,第一次及格人数是不及格人数的3倍多4人,第二次及格人数增加5人,使及格的人数是不及格人数的6倍。五(1)班有多少人?分析 第二次及格人数增加5人,也就是不及格人数减少5人。若不及格人数减少5人,及格人数也减少53=15人,那么及格人数仍是不及格人数的3倍多4人。可事实上及格的人数不但没有减少15人,反而增加了5人,因此多了(1554)人不我出了(63)倍。所以第地次不及格的人数是(1554)(63)=8人,全班8(16)=5
6、6人。练习四1,有两筐水果,甲筐水果的个数是乙筐的3倍,如果从乙筐中拿5个放进甲筐,这时甲筐的水果恰好是乙筐的5倍。原来两筐各有多少个水果?2,某车间有两个小组,A组的人数比B组人数的2倍多2人。如果从B组中抽10人去A组,则A组的人数是B组的4倍。原来两组各有多少人?3,五(1)班上学期体育达标的人数比未达标人数的5倍多2人,今年又有2倍同学达标,这样,达标的人数正好是未达标人数的7倍。这个班共有多少个同学? 例题5 用绳子测井深,把绳了三折来量,井外余16分米;把绳子四折来量,井外余4分米。求井深和绳长。 分析 从图中可以看出:把绳子三折来量,井外余16分米,也就是绳长比井深的3倍还多16
7、3=48分米;把绳子四折来量,井外余4分米,也就是绳长比井深的4倍还多44=16分米。把这两种情况进行对比便可知道:4816=32分米正好就是井深。因此,绳长是32348=144分米。练习五1,用一根绳子量大树的周长,把绳子2折后正好绕大树2圈;若把绳子3折后,绕大树一圈还余30厘米。求大树的周长和绳长。2,有一根绳子和一根竹竿,把绳子对折后比竹竿长2为,把绳子四折后比竹竿短2米。竹竿长几米?绳子长几米?3,用一个杯子向一个空瓶里倒水,如果倒进3杯水,连瓶共重440克;如果倒进7杯水,连瓶共重600克。一杯水重多少克?空瓶重多少克?分解质因数(一)专题简析:一个自然数的因数中,为质数的因数叫做
8、这个数的质因数。把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。例如:24=2223,75=355。我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。 例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。一共有多少种不同的分法?分析 先把18分解质因数:18=233,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。有哪几种分法?2
9、,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。 例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。共有多少种分法?分析 先把168分解质因数,168=22237,由于每份不得少于10颗,也不能多于50颗,所以,每份有223=12颗,27=14颗,37=21颗,2223=24颗,237=42颗,共有5种分法。练习二1,把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。2,四个连续奇数的和是19305,这个四奇数分别是多少?3
10、,把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。甲说:“我的三个数的积是48。”乙说:“我的三个数的和是16。”丙说:“我的三个数的积是63。”甲、乙、丙各拿了哪几张卡片? 例题3 将下面八个数平均分成两组,使这两组数的乘积相等。 2、5、14、24、27、55、56、99分析 14=27 55=51124=2223 56=222727=333 99=3311可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。因为要把这八个数分成两组,且积相等,所以,每组数中应含有四个2,三个3,一个5,一个7和一个11。经排列为(5、99、24、14)和(55
11、、27、56、2)。练习三1,下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。=12882,有三个自然数a、b、c,已知ab=30,bc=35,ca=42,求abc的积是多少?3,把40、45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。 例题4 王老师带领一班同学去植树,学生恰好分成4组。如果王老师和学生每人植树一样多,那么他们一共植了539棵。这个班有多少个学生?每人植树多少棵?分析 根据每人植树棵数人数=539棵,把539分解质因数。539=7711,如果每人植7棵,这个班就有7111=76人;如果每人植树11棵,这个班共有7
12、71=48人。练习四1,3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。2,小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。小青买的电影票是几排几座?3,把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920。这篮苹果共有多少个? 例题5 下面的算式里,里数字各不相同,求这四个数字的和。 =1995分析 要使两个两位数的积等于1995,那么,这两个数的积应和1995有相同的质因数。1995=35719,可以有3557=1995和2195=1995。因
13、为要满足“数字各不相同”的条件,所以取2195=1995,这四个数字的和是:2195=17。练习五1,在下面算式的框内,各填入一个数字,使算式成立。 =19952,有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。3,有三个自然数a,b,c,已知ab=35,bc=55,ac=77,求三个数之积是多少?分解质因数(二)专题简析: 许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。 例题1 三个质数的和是80
14、,这三个数的积最大可以是多少?分析 三个质数相加的和是偶数,必有一个质数是2。802=78,剩下两个质数的和是78,而且要使它的积最大,只能是41和37。因此,这三个质数是2、37和41。最大积是23741=3034练习一1,有三个质数,它们的乘积是1001,这三个质数各是多少?2,张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。求张明的成绩、名次和年龄分别是多少?3,写出若干个连续的自然数,使它们的积是15120。 例题2 长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?分析 这道题如果用方程来解会比较麻烦,我们可以把375分解
15、质因数看一看。375=5553,因为55比53正好多10,所以,此长方形的长是55=25米,宽是53=15米,它们的和是40米。练习二1,237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数。2,有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,这4个孩子中最大的几岁?3,有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长。 例题3 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵?分析 根据每人种树棵数参加人数=1073,把1073分解质因数:1073=29
16、37,再根据学生恰好平均分成三组可知:参加种树的人数是3的倍数多1,由于只有37比3的倍数多1,所以有37人,平均每人种29棵。练习三1,一个长方体的长、宽、高是三个连续的自然数。已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?2,老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支。每支钢笔原价多少元?3,王老师带同学们擦玻璃,同学们恰好平均分成3组。如果师生每人擦的块数同样多,一共擦111块,那么,平均每人擦了多少块? 例题4 把155/186和221/187约分。分析 这两个分数的分子和分母都比较大,不能一眼看出分子和分母的公约数。我们可以先
17、求出分子与分母的差,如果差是质数,就直接用这个质数去约分;如果差是合数,就把这个合数分解质因数,然后用其中的一个质数去约分。(1)186155=31,31是质数,用31约分得:155/186=5/6;(2)221187=34,34=217,用17约分得:221/187=13/11。练习四请用上面的方法把下面的几个分数约分。46/69 143/117 247/323 161/253 例题5 小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张。小明买了多少张画片?分析 根据题意可知:画片的单价张数=216分,它们乘积的质因数和216的质因数相同。我们可以先把216分解质因数,再写成两数相乘的形式分析:216=2333=827=924,显然,216分可以买8分的画片27张,也可以买9分的画片24张。所以,小明买了24张画片,符合题意。练习五1,求2310的约数中,除它本身以外最大的约数是多少?2,自然数a乘以2376,所得的积正好是自然数b的平方,求a最小是多少?3,将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍,求获奖人数和每人分得的钱数。- 7 -