收藏 分销(赏)

2016年中考数学应用题专题复习.doc

上传人:快乐****生活 文档编号:2486558 上传时间:2024-05-30 格式:DOC 页数:6 大小:94.46KB 下载积分:6 金币
下载 相关 举报
2016年中考数学应用题专题复习.doc_第1页
第1页 / 共6页
2016年中考数学应用题专题复习.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
小专题五:应用题专题复习 一、方程与方程组型 1.(2015•平谷区二模)列方程或方程组解应用题: 为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45座客车?   2.(2015•岳池县模拟)一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?   3.(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同. (1)求该快递公司投递总件数的月平均增长率; (2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?   4.(2015•淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售量是      斤(用含x的代数式表示); (2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?   5.(2016•安徽模拟)2014年西非埃博拉病毒疫情是自2014年2月开始爆发于西非的大规模病毒疫情,截至2014年12月02日,世界卫生组织关于埃博拉疫情报告称,几内亚、利比里亚、塞拉利昂、马里、美国以及已结束疫情的尼日利亚、塞内加尔与西班牙累计出现埃博拉确诊、疑似和可能感染病例17290例,其中6128人死亡.感染人数已经超过一万,死亡人数上升趋势正在减缓,在病毒传播中,每轮平均1人会感染x个人,若1个人患病,则经过两轮感染就共有81人患病. (1)求x的值; (2)若病毒得不到有效控制,三轮感染后,患病的人数会不会超过700人?   6.(2016•凉山州模拟)某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同. (1)求该县这两年教育经费平均增长率; (2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗? 二、不等式与不等式组型 7.(2010春•三元区校级期中)某学校为学生安排宿舍,现有住房若干间,若每间5人,则还有14人安排不下,若每间7人,则有一间不足7人.问学校至少有几间房可以安排学生住宿?可以安排住宿的学生有多少人?   8.(2015•甘孜州)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表: A种水果/箱 B种水果/箱 甲店 11元 17元 乙店 9元 13元 (1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元? (2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?   9.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件. (1)求饮用水和蔬菜各有多少件? (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来; (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?   三、函数综合型 10.(2015•衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车取游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示. 请结合图象解决下面问题: (1)高铁的平均速度是每小时多少千米? (2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米? (3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?     11.(2016•安徽模拟)为加大对残疾人补助力度,改善残疾人的生活水平,2015年安徽省提高了对残疾人的补助标准,一级、二级救助标准由每人每年726元增加到每人每年800元;三级残疾人救助标准由每人每年360元增加到每人每年400元.某县有大量一级、二级和三级残疾人.2014年共投入补助经费1446万元.2015年提高补助标准后投入补助经费1600万元. (1)2015年该县的一级、二级和三级残疾的人数没有任何变化,则2015年该县的一级、二级残疾人共多少万人?三级残疾人共多少万人; (2)2015年该县决定对一级、二级残疾人进行养老保险的补助,一级残疾人每人每年养老保险补助480元,二级残疾人每人每年300元.已知二级残疾人的数量不低于一级残疾人的4倍,则该县最多需要投入残疾人养老保险的补助多少万元?   12.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍. (1)试问去年每吨大蒜的平均价格是多少元? (2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少? 13.(2016•安徽模拟)音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx. (1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值; (2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米? (3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?   14.(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒. (1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式; (2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少? (3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?   15.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如表所示: 时间t/天 1 3 6 10 36 … 日销售量m/件 94 90 84 76 24 … 未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=-t+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题: (1)认真分析表中的数据,用所学过的一次函数,二次函数,反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的函数关系式; (2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少? (3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围. 四、几何类应用题  16、某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90∘,AC=80米,BC=60米。 (1)若入口E在边AB上,且与A. B等距离,求从入口E到出口C的最短路线的长; (2)若线段CD是一条水渠,且D点在边AB上,已知水渠的造价为10元/米,则D点在距A点多远处时,此水渠的造价最低,最低造价是多少? 17、如图,公路MN与PQ在点P处交汇,且∠QPN=30∘,点A处有一住宅小区,AP=160米。假设卡车行驶时,周围100米以内(包括100米)会受到噪声的影响, (1)那么卡车在公路MN上沿PN方向行驶时,小区是否会受到噪声影响?如果受影响,请说明理由。 (2)已知卡车行驶速度为18千米/时,那么小区受影响的时间为多少? 18、某人在公路a上向东行走,在A处测得公路旁的建筑物C在北偏东60°方向,前进50m到达B处,又测得建筑物C在北偏东45°方向,继续前进,此人在行走过程中,离建筑物C的最近距离是多少(结果保留根号) 第6页(共6页)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服