收藏 分销(赏)

外文翻译=从生态加工技术对攻丝的研究=2500字符.doc

上传人:胜**** 文档编号:2485049 上传时间:2024-05-30 格式:DOC 页数:14 大小:767.50KB
下载 相关 举报
外文翻译=从生态加工技术对攻丝的研究=2500字符.doc_第1页
第1页 / 共14页
外文翻译=从生态加工技术对攻丝的研究=2500字符.doc_第2页
第2页 / 共14页
外文翻译=从生态加工技术对攻丝的研究=2500字符.doc_第3页
第3页 / 共14页
外文翻译=从生态加工技术对攻丝的研究=2500字符.doc_第4页
第4页 / 共14页
外文翻译=从生态加工技术对攻丝的研究=2500字符.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、中国地质大学长城学院毕业设计外文资料翻译译文从生态加工技术对攻丝的研究摘 要 这项研究是关于攻螺纹(扭矩,攻丝,磨损,工作硬度等)的加工特性。在生态加工技术操作下,涂有TiN的MMC(铝合金金属复合材料)攻螺丝形成的攻丝得到了调查,并与没有涂层的特性进行了比较。下面的结果就是从这份研究中得到的:1.TiN涂层攻丝的刀具寿命是没有攻丝的四倍;2.有TiN涂层的攻丝形成的螺纹比没有的加工硬化要低。关键词:攻丝; 攻螺丝; 螺纹; 生态加工; 钻孔1引言螺栓、螺钉机械连接中的螺纹是机械部件的最重要紧固系统之一。螺纹制造有很多种方法,特别攻螺丝是用来生产内螺纹的有效的技术。最近,每年都强调增加生产力。

2、据说现在的车间里,最重要和最严重的问题是提高生产力。怎样改善孔加工(钻/铰孔和攻丝)已成为一个严重的问题。传统的刀具材料限制了生产力的提高,如高速钢刀具加工铝合金金属复合材料(MMC)时刀具寿命很短由于碳化硅粒子的腐蚀天性。因此,刀具的磨损和破坏阻碍了生产力的提高。为了实现理想的生产力,攻丝已经吸引了车间工程师的注意。在这项研究中,用攻丝加工MMC,利用攻丝(扭矩,攻丝磨损,工作硬度等)的切割特点, 有TiN涂层和没有涂层的都进行了调查。 2. 实验方法2.1实验装置攻丝试验在辛辛那提5NC-MC (5HP)进行。该(钻孔和攻丝) 仪器和数据采集系统如图2.1。切削力(推力和扭矩)测定使用三个

3、类型9273 压电电力测功器和相应的场所用5007电荷放大器放大。得到的信号,然后传递到A / D转换器AZI-16-12 ,连接到个人电脑。切削力测量安装如图2.2。2.2工件,钻及塔在本实验中使用的工件是铝合金(2618 MMC)的增强,15碳化硅颗粒。形成无槽丝锥的螺纹是M10如图2.3和两种类型的攻丝被用来在调查过程中。攻丝的形状类似于螺钉的形状(M10,孔距1.5),无论有没有氮化钛涂层。定位孔的直径9.3mm,用于所有试验和聚晶金刚石攻丝钻孔(高速钢硬质合金碳化钨和聚晶金刚石钻孔)用在所有测试。本实验中用的钻头如图2.4。图2.1 窃听器和数据采集仪器 图2.2 Schmatic图

4、的窃听系统 图2.3 水龙头用于这项工作2.3仪表和检测方法的线程线程的估计是用螺纹规来衡量。结果被分为A等和B等 1 。硬铝合金 2 螺纹深度是攻丝直径的1.4倍。甲等-质量:直径通过整个螺纹测量。乙等-质量:直径至少15毫米。图2.5是显示的直径指标(M101.5 ISO 6H)。2.4实验特性攻丝试验时,切削速度(攻丝的转速)是215 rpm和进给速度0.1mm/rev (322.5mm/min)。冷却油(氯和硫免费热切割石油)手动供应。3.实验结果与讨论 在M10攻丝操作的推力和扭矩信号显示在图3.1 。结果表明,随着螺纹扣数的形成,扭矩增大,离开孔时减小。然而,可以看到几乎没有推力的

5、增加。图2.4 形状的聚晶金刚石钻头 图2.5 螺纹规3.1转矩比较图3.2显示是先前所提到的有TiN涂层和没有涂层的第1孔和第8孔攻丝的扭矩信号。图2.1 参数确定图3.1 图切削力信号根据窃听测试扭矩 图3.2 比较扭矩信号(第1洞和第8洞)与扭矩在攻丝操作的初始阶段显示推力和扭矩的增加。然而,当螺纹成形进入全速时,推力显示出下降的趋势伴随着扭矩的增加和攻丝缩回,在螺纹孔口也可以看到负扭矩的出现。图3.1负推力值是攻丝偏离中心的结果是因为一方不正当的工件,刀具的安装或定位空的表面粗糙度。 上述不确定的因素是定位孔的表面粗糙度。当有TiN涂层第一孔的攻螺纹的攻丝扭矩值8.7 Nm而没有涂层的

6、值是11.2Nm,得到扭矩信号。因而,第一孔有涂层的相比没有涂层的扭矩减少了28 。而对第8孔有TiN涂层的扭矩相比没有涂层减少了52 。初始阶段和在攻丝突破点前扭矩信号的比较表明,没有涂层的攻丝扭矩减少要明显于有TiN涂层的攻丝。可以说,就形成的攻丝而言,在车螺纹时工作是均匀分布在刮削端。扭矩的比较结果总结在图3.3 。结果表明,有TiN涂层的攻丝扭矩一般低于那些没有涂层的攻丝。3.2螺纹形式的比较有TiN涂层和没有涂层的攻丝的螺纹形式如图3.4 。在螺纹孔, ,位置的横截面的放大图像以及1,4,8号孔作了比较。图3.4是不同位置螺纹的照片模型,而图3.5是八号孔放大的图像。可以从图3.5

7、中看出,有TiN涂层攻丝形成的螺纹的侧面 没有异常。相反,没有涂层表明孔的进口和出口相应的号和号位置无规律。图3.3 比较扭矩信号同类型 图3.4 阐明的轴向截面建制线程为了验证上述的意见,对孔和进行详细的分析进行。结果总结在图3.6 。图3.6(a)和(b)给出了1号和8号螺纹孔各自的和位置的结果。可以观察图3.6(a),有TiN涂层的攻丝齿形远远优于没有涂层的。3.3比较加工硬化当采用有TiN涂层和没有涂层的攻丝车螺纹时,研究比较加工硬化的严重性。本研究结果归纳于图3.7 。选用了两种类型中1号攻丝。 有TiN涂层和没有涂层的结果分别在图3.7(a)和(b)。用能受100 gw的硬度测量硬

8、度仪测量硬度。结果表明,有TiN涂层的攻螺纹的硬度低于没有涂层的。上述结果表明,在以下几个方面,如螺纹形式和加工硬化等,有TiN涂层的攻丝优于没有涂层的攻丝。图3.5 比较线程形式 图3.6 比较扩大线程形式3.4刀具寿命的比较有TiN涂层和没有涂层的攻丝被用来调查性能和攻丝的刀具寿命一样高。每种类型的攻丝反复进行3次试验,。结果总结在图3.8 。螺纹规读数用A,B值评估。结果表明,在刀具寿命达到限制前,螺纹孔的平均数,是没有TiN涂层攻丝的X = 13和有涂层攻丝的X = 49。有TiN涂层攻丝的刀具寿命是没有涂层的3.8倍。3.5比较塔磨损图3.9显示各种类型攻丝的刀具磨损,在实验中车螺纹

9、后如图3.8所示。应当指出的是,所有用于比较的攻丝已充分达到刀具寿命。有TiN涂层和没有涂层的攻丝分别如图3.9(a)和(b),。可以看出,所有攻丝的刀具磨损点。此外,可以看到大量的磨损在分界线上。有TiN涂层和没有涂层攻丝的比较,如放大点,结果表明,后者的磨损明显高于前者。就有TiN涂层攻丝来说,在刀具磨损区可以看到覆盖的TiN涂层。图3.7 比较硬度分布 图3.8 用攻丝的刀具寿命的比较 图3.9 用攻丝的刀具磨损比较4.结论4.1有TiN涂层的刀具的寿命大约是没有涂层的刀具寿命的4倍。 4.2和没有TiN涂层的刀具相比,有涂层刀具的扭转力下降了28 。 4.3和没有TiN涂层的刀具相比,

10、带有涂层的齿形螺纹刀具则显示出更少的不规则性。 4.4有TiN涂层的刀具的硬度低于没有涂层的刀具。 4.5从以上结果显示, 有TiN涂层的刀具在以下方面优于没有涂层的刀具:刀具寿命,螺纹样式和加工硬化等。参考文献1 WOLFGANGSTRACHE : Alternative Strategies for the Production of Threads in Aluminum-based SIC Reinforced Metal Matrix Composite (MMC) Alloy,1993.2 Beitz.W : Dubbel-Taschhenbuch fuer den Maschin

11、enbau. ISBN 3-540-52381-2, (1990), G15.外文原文A Study on Tapping Viewed from Eco-Machining TechnologyAbstractThis study deals with machining characteristics of thread tapping (torque, tap, wear, workhardness etc.) The tapping of MMC (aluminum alloy metal matrix composite) with TiN coated forming taps u

12、nder eco-machining technology operation, where chips are not produced and ejected from the tap flute, was investigated and compared with the characteristics during uncoated tapping. The following results are obtained from this study. 1.The tool life of TiN coated taps was 4 times longer than that of

13、 uncoated tap;2.Threads formed with the TiN coated taps exhibit lower work hardening than those formed with uncoated taps.Keywords: Tap; Tapping; Thread; Eco-Machining; Drilling1. IntroductionThreads form the mechanical joint of a boltscrew connection, which is one of the most important fastening sy

14、stems for mechanical components. There are many ways of thread making, especially that of tapping which has been employed as an efficient technique for the production of internal threads.Recently, the rise of productivity has been emphasized year by year. Also it is said that the improvement of prod

15、uctivity is one of the most important and serious problem in todays machine shops. The improvement of hole making production (drilling/reaming and tapping) has become a serious matter. One factor limiting productivity gains has been that conventional tool materials such as HSS exhibit very short too

16、l lives when machining an aluminum alloy metal matrix composite (MMC) due to the abrasive nature of the SiC particles. Therefore, the improvement has been obstructed by various problems as rapid tool wear and failure. As a mean of achieving the desired productivity gains, forming taps have caught th

17、e attention of machine shop engineers.In this study, cutting characteristics of tapping (torque, taps wear, work hardness, etc.) during the tapping of MMC with forming taps, both TiN coated and uncoated was investigated.2. Experimental Methods2.1 Experimental EquipmentThe tapping tests were conducte

18、d on a Cincinati 5NC-MC (5HP). The (drilling and tapping) apparatus and data acquisition system are presented in Figure 2.1. The cutting forces (thrust and torque) were measured using a three component Kistler Type 9273 Piezo-electric dynamometer and the corresponding locus was amplified by a Kistle

19、r type 5007 charge amplifier. The signal obtained was then passed to a Towa A/D converter type AZI-16-12, connected to a personal computer. A schematic diagram of the cutting force measuring setup is presented in Figure 2.2.2.2 Workpiece, Drill and TapThe workpiece used in this experiment is aluminu

20、m alloy (2618 MMC) reinforced with 15 vol% silicon carbide (SiC) particulate. The thread forming fluteless taps were M10 as shown in Figure 2.3 and two types of taps were used during the course of the investigation.The shape of the taps was similar to the shape of a screw (M10, Pitch:1.5), either un

21、coated or coated with Titanium nitride (TiN).Pilot holes of 9.3mm diameter were used for all trials and PCD tipped drills (HSS cemented tungsten carbide and polycrystalline diamond drilling) were employed in all the tests. The shape of drill used in this test is shown in Figure 2.4.2.3 Gauge and Ins

22、pection Method of ThreadThe estimate of threads was performed with a thread gauge (Go-NoGo gauge).The results were classified as A and B quality1. Where, 1.4tapped diameter is Diameter is the recommended depth of thread of hard Aluminum alloy2.A quality : Gauge can be turned through the whole thread

23、.B quality : Gauge can be turned in at least 15mm.Figure 2.5 shows the appearance of gauge (M101.5 ISO 6H).2.4 Experimental CharacteristicsTapping tests were conducted at a cutting speed (rotational speed of tap) of 215 rpm and feed rate of 0.1mm/rev (322.5mm/min). Coolant oil (Chlorine and sulphur

24、free heat cutting oil) was supplied manually.3. Experimental Results And DiscussionCutting Forces in Tapping (thrust, torque) The thrust and torque signals produced in this tapping operation with a M10 tap are shown in Figure 3.1. The results show that torque increases with number of threads formed

25、and decreases at the instant that the tap is about to break through the outlet of the hole. Whereas, little increase in thrust can be observed.3.1 Comparison of TorqueFigure 3.2 shows torque signals of tap in the 1st hole and 8th holes for the TiN-coated and uncoated taps mentioned in the previous s

26、ection.At the initial stage of the tapping operation both thrust and torque show an increase in magnitude. However, when the thread forming operation enters full gear, the thrust force shows a decreasing trend accompanied with in increase in torque and as the tap retracts after breakthrough, a negat

27、ive torque of 5N magnitude can be observed across a few threads at hole outlet.The negative thrust value observed in Figure 3.1 is the outcome of the deflection of the tap from the center due to either improper workpiece, tool setup or poor finish of the pilot holes. The inconclusive results observe

28、d above led to the investigating of the factors responsible for the poor finish of the pilot holes.The torque signals derived while threading taps for the 1st hole show tapping torque values of 8.7 Nm for the TiN coated tap and11.2 Nm for the uncoated and tap respectively. Thus, for the 1st hole, th

29、e TiN coated tap exhibits a 28% reduction in torque compared to the uncoated tap. While for the 8th hole the reduction in torque for the TiN coated tap is approximately 52% as compared to uncoated tap.Comparison of the torque signals at the initial phase and prior to breakthrough of the taps shows t

30、hat the uncoated tap exhibits a sharper decrease in torque than the TiN coated tap. It can be said that, in the case of forming taps, work is evenly distributed at the scrape point during threading. A comparison of the torque results is summarized in Figure 3.3. Results indicate that tapping torque

31、of the TiN coated tap is generally lower than those of the un-coated tap.3.2 Comparison of Thread FormsThe thread forms for the TiN coated and uncoated taps are shown in Figure 3.4. Magnified images of the axial cross-section of the formed threads at position No., and in holes and 1.4 and 8 were use

32、d in the comparison.Figure 3.4 is a model of the photographed threads at the various positions, while Figure 3.5 shows magnified images for hole No.8As it can be seen from Figure 3.5, the thread profile at position No. to of threads formed with the TiN coated tap show no abnormalities. On the contra

33、ry, with the uncoatedtaps the root shows irregularities at position No. and corresponding to the hole inlet and outlet.In order to validate the observations mentioned above, a detailed analysis was performed on holes No. and . Results are summarized in Figure 3.6. Figure 3.6(a) and (b) give results

34、for hole No. and 8 at thread position No. and respectively. As it can be observed in Figure 3.6(a), the tooth profile of the TiN coated is far superior to the uncoated tap.3.3 Comparison of Work HardeningA comparative study was performed to investigate the magnitude of work hardening when using the

35、TiN coated and uncoated taps to form threads.Results of this study are summarized in Figure 3.7. Tap No.1 of both tap types were used. Results for the TiN coated and uncoated tap are given in Figure 3.7(a) and (b) respectively. Hardness was measured on a hardness tester loaded with a 100 gw.The resu

36、lts show that the hardness of the TiN coated tapping thread is lower than theuncoated tapping thread. The above results show that the TiN coated tap is superior to the uncoated tap in the following aspects, thread form and work hardening etc,.3.4Comparison of Tool LifeThe TiN coated and uncoated tap

37、s were used to investigate the performance level with respect to tool life of taps. Tests were repeatedly performed three times with each type of tap. The results are summarized in Figure 3.8.Thread gauge readings were evaluated using A, B values. The results indicate that the average number of thre

38、ad holes before tool life limit is reached are uncoated X =13 and TiN coated tap X =49 hole tap. The tool life of the TiN coated tap is 3.8 times longer than that of uncoated tap.3.5 Comparison of Tap WearFigure 3.9 shows the tool wear of the various taps after threading in the experiments indicated

39、 in Figure 3.8. It should be noted that all the taps used for this comparison have already attained full tool life. TiN coated and uncoated taps are shown in Figure 3.9(a) and (b), respectively. It can be seen that the point of all the taps show tool wear. In addition, extensive wear can be observed

40、 at the boundary between the full thread form with the chamfer thread run-out of same 35 threads from the scrape point. A comparison of the TiN coated and the uncoated tap, as exemplified by the magnified point, shows that wear of the latter is more pronounced than the former. In the case of the TiN

41、 coated tap, an overlay of TiN coating can be observed at the tool wear zone.4. Conclusions4.1The tool life of the TiN coated tap was approximately 4 times longer than that of the uncoated tap.4.2The TiN coated tap (for the 1st hole) exhibits 28% reduction in torque compared to the uncoated tap.4.3T

42、he tooth profile of the thread produced by the TiN coated tap shows fewer irregularities than for the uncoated tap.4.4 The hardness of the TiN coated tapping thread is lower than the uncoated tapping thread.4.5From the above results, the TiN coated tap is superior to the uncoated tap in the followin

43、g aspects, tool life, thread forms and work hardening etc,.References1 WOLFGANGSTRACHE : Alternative Strategies for the Production of Threads in Aluminum-based SIC Reinforced Metal Matrix Composite (MMC) Alloy,1993.2 Beitz.W : Dubbel-Taschhenbuch fuer den Maschinenbau. ISBN 3-540-52381-2, (1990), G1

44、5.1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器7. 单片机控制的二级倒立摆系统的研究8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究11. 基于单片

45、机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO,2激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片

46、机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36

47、. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 研究报告 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服