资源描述
专题二 方程与不等式
一、考点综述
考点内容:
1、方程的解、解方程及各种方程(组)的有关概念
2、一元一次方程及其解法和应用;二元一次方程组及其解法和应用
3、用直接开平方法、配方法、公式法、因式分解法角一元二次方程
4、可化为一元一次方程、一元二次方程的分式方程的解法及其应用
5、一元二次方程根的判别式及应用
6、不等式(组)及解集的有关概念,会用数轴表示不等式(组)的解集
7、不等式的基本性质
8、一元一次不等式(组)的解法及应用
考纲要求:熟练解方程和方程组;简单运用一元二次方程根的判别式以及根与系数关系;列方程和方程组解应用题;熟练解不等式或不等式组以及列不等式(组)解决方案设计问题和决策类问题。
考题分值:方程与方程组始终是中考命题的重点内容,近几年全国各地的中考试题中,考查方程和方程组的分值平均占到25%,试卷涉及的主要考点有方程和方程组的解法;一元二次方程根的判别式以及根与系数关系的简单运用;列方程和方程组解应用题三大类问题.其中列一元一次方程求解商品利润问题以选择题为主;一元二次方程的解法以选择题和解答题为主;根的判别式及根与系数的关系以选择题和解答题为主,但难度一般不大;列二元一次方程组解应用题以解答题为主,主要考查解工程类、方案设计类及愉策类问题.结合2007-2008年的中考题不难看出,课改区对方程(组)的考题难度已经有所降低,如根与系数关系的运用,课改区几乎不再考查.
不等式与不等式组的分值一般占到5-8%左右,其常见形式有一元一次不等式(组)的解法,以选择题和填空题为主,考查不等式的解法;不等式(组)解集的数轴表示及整数解问题,以选择题和填空题为主;列不等式(组)解决方案设计问题和决策类问题,以解答题为主.近年试题显示,不等式(组)的考查热点是其应用,即列不等式(组)求解实际生活中的常见问题.
备考策略:对于方程与不等式的知识的复习,关健在于扎实基本概念和基本知识。在对应用题的复习时一方面要弄清题目中的已知、未知以及它们之间的关系;另一方面要弄清基本关系量及变式,还要善于找出其中的相等关系式,还可以使用图表等多种方式来帮助分析问题。
二、例题精析
例1解方程: .
【解题思路】去分母将分式方程转化为整式方程是解分式方程的基本方法,验根只需将结果代入最简公分母即可.
原方程变形为方程两边都乘以,去分母并整理得,解这个方程得.经检验,是原方程的根,是原方程的增根.∴原方程的根是.
【答案】.
【规律总结】部分学生在解分式方程时,往往不能拿到全部分数,其中很多人是因为忘记检验.突破方法:牢牢记住分式方程必须验根,检验这一步不可缺少.
例2.
【解题思路】解方程组的基本思路就是消元和降次,要根据方程组的特点选取适当方法.
由方程①可得,
∴。它们与方程②分别组成两个方程组:
解方程组可知,此方程组无解;
解方程组得
所以原方程组的解是
【答案】
【规律总结】少数学生未能掌握二元二次方程组的基本解题思路,不知如何处理.突破方法:将第一个方程通过因式分解,得到两个一次方程,再分别与第二个方程组成两个新的方程组,求解.
解题关键:解二元二次方程组的基本解题思想是消元,即化二元为一元.常用的方法就是通过因式分解进行降次,再重新组成新的方程组求解,所求得的结果即为原方程组的解.
例3如图甲是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图乙是车棚顶部截面的示意图,弧AB所在圆的圆心为O.
车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留).
O
B
A
·
图乙
图甲
A
B
2米
4米
60米
【考点要求】本题考查用方程解几何问题,方程是解决几何有关计算问题的有效的方法和工具,通常结合勾股定理的形式出现.
【解题思路】连结OB,过点O作OE⊥AB,垂足为E,交弧AB于F,如图.
·
E
F
O
B
A
由垂径定理,可知:E是AB中点,F是弧AB中点,
∴EF是弓形高 ∴AE=2,EF=2.
设半径为R米,则OE=(R-2)米.
在Rt△AOE中,由勾股定理,得 R 2=.解得R =4.
∵sin∠AOE=, ∴ ∠AOE=60°,
∴∠AOB=120°. ∴弧AB的长为=.
∴帆布的面积为×60=160(平方米).
【答案】160(平方米).
【规律总结】方程是解决几何有关计算问题的有效的方法和工具,通常结合勾股定理的形式出现,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.
例4已知方程组的解x、y满足2x+y≥0,则m的取值范围是( )
A.m≥- B.m≥ C.m≥1 D.-≤m≤1
【解题思路】由题意,可求出,代入2x+y≥0,解得m≥-.或者也可整体求值,把第(2)式乘以4减去第(1)式直接得,得,解得m≥-.
【答案】选A.
【规律总结】本题一般做法是把m看作是已知系数,用含m的代数式表示x、y,解出方程组的解,然后再把所求的x、y的值入题目中的不等式,从而得到只含m的不等式,求出解集.或者也可以依据题目条件的特点,从整体考虑,直接进行整理得到与不等式相关的代数式,进行求解.
例5.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品,共50件.已知生产一件种产品,需用甲种原料9千克,乙种原料3千克;生产一件种产品,需用甲种原料4千克,乙种原料10千克.
(1) 据现有条件安排、两种产品的生产件数,有哪几种方案,请你设计出来.
(2) 若甲种原料每千克80元,乙种原料每千克120元,怎样设计成本最低.
【解题思路】(1)设生产种产品件,种产品件.按这样生产需甲种的原料,∴即:.∵为整数,∴∴有三种生产方案.
第一种方案:生产种产品30件,种产品20件;
第二种方案:生产种产品31件,种产品19件;
第三种方案:生产种产品32件,种产品18件.
(2)第一种方案的成本:(元).
第二种方案的成本:(元).
第三种方案的成本:(元).
∴第三种方案成本最低.
【答案】(1)第一种方案:生产种产品30件,种产品20件;
第二种方案:生产种产品31件,种产品19件;
第三种方案:生产种产品32件,种产品18件.
(2)第三种方案成本最低.
【规律总结】解决本题的关键在于找出生产种产品和种产品分别甲种原料和乙种原料的数量,再根据厂里现有甲乙两种原料的数量列出不等式组,解不等式组得出结果可得三种生产方案.再根据三种不同方案,求出最低成本.
三、综合训练
一、选择题
1。 不解方程判断下列方程中无实数根的是( )
A.-x2=2x-1 B.4x2+4x+=0; C. D.(x+2)(x—3)==—5
2。 若是方程的两个实数根,则的值 ( )
A.2007 B.2005 C.-2007 D.4010
3.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A。200(1+x)2=1000 B。200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
4.一元一次不等式组的解集是 ( )
A.—2<x<3 B.-3<x<2 C.x<-3 D.x<2
5.如图1,在数轴上所表示的是哪一个不等式的解集 ( )
A. B. C.x+1≥-1 D.—2x>4
6.关于x的方程的解是非负数,那么a满足的条件是( )
A.a>3 B.a≤3 C.a<3 D.a≥3
二、填空题
1. 已知方程组的一组解是,则其另外一组解是 .
2. 3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要______场比赛,则 5 名同学一共需要______比赛.
3.不等式的解集是__________________.
4.当x_________时,代数代的值是正数.
5.不等式组的解集是__________________.
6.不等式的正整数解是_______________________.
7.的最小值是a,的最大值是b,则
8.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________〈 b 〈_____________.
三、解答题
1.已知关于x、y的方程组.
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1.
2.已知方程组的解为负数,求k的取值范围.
3.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0。5 元交费.
①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)?
②下表是这户居民 3 月、4 月的用电情况和交费情况:
月份
用电量(度)
交电费总数(元)
3月
80
25
4月
45
10
根据上表数据,求电厂规定A度为多少?
4.艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
5.近几年我省高速公路的建设有了较大的发展,有力地促进了我省的经济建设,正在修建的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作24天可以完成,需费用120万元,若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元.问:(1)甲、乙两队单独完成此项工程,各需要多少天?(2)甲、乙两队单独完成此项工程,各需要费用多少万元?
答 案
一 、选择题
1.B(提示:先将各方程整理为一般式,再利用根的判别式进行判断,B项中<0,所以B项方程无实数根)
2.B(提示:因为是方程的两个实数根,则,把它代入原式得,再利用根与系数的关系得,所以原式=2005)
3.D(提示:第一季度1000万元营业额为一、二、三三个月的总额,应把三个月营业额相加)
4.C(提示:不等式①的解集为x<2,不等式②的解集为x<-3,共公部分为x<-3)
5。 C(提示:解四个不等式,得解集分别为x>-2,x≥-9,x≥-2,x<-2,数轴上表示的范围是x≥-2)
6。 D(提示:解关于x的方程得,因为解非负,所以≥0,解得a≥3)
二、填空题
1。 (将代入原方程然后所得解方程即可)
2。 3,10(提示:设x名学生参加比赛,每人需参赛(x-1)场,因为甲跟乙比赛时,也是乙跟甲比,所以总共比赛场次为
3。 x≤5(利用不等式的基本性质)
4. x<(提示:由题意,2-3 x>0,解得x<)
5。-2≤x<1(提示:求两不等式解集的公共部分)
6.1,2,3(提示:先求出不等式的解集为x≤,再取其中的正整数)
7.-4(提示:x≥2最小值a=2,x≤-6,最大值b=-6,a+b=2+(-6)=-4)
8.85%a<b<92% a(提示:由题意可列不等式(1-15%)a<b<(1-8%)a)
三、解答题
1。 解(1)
(2)由题意得即,解得1<x≤5。
2。 解方程组,得,因为方程组的解是负数,所以即,解得k<-8)
3.解:①10+(90-A) ②由表中数据可得25=10+(80-A) 解得:A=50
4.解:(1)设该工艺品每件的进价为元,则标价为。
由题意得: 解得
(2)工艺品应降价元.
则时,获得的利润最大为.
5.解:(1)设甲、乙两队单独完成此项工程分别需要x天,y 天.
根据题意得
解这个方程组得x=30,y=120 。
经检验x=30,y=120是方程组的解.
(2)设单独完成此项工程,甲需费用m万元,乙需费用n万元,
根据题意,得
解这个方程组得m=135,n=60 。
展开阅读全文