收藏 分销(赏)

直线电机本体建模.doc

上传人:w****g 文档编号:2476272 上传时间:2024-05-30 格式:DOC 页数:26 大小:650.60KB 下载积分:10 金币
下载 相关 举报
直线电机本体建模.doc_第1页
第1页 / 共26页
直线电机本体建模.doc_第2页
第2页 / 共26页


点击查看更多>>
资源描述
基于Simulink的直线电机本体建模 电磁发射课题组 2015年10月29日 1 直线感应电动机的等效电路 直线电机在结构上可看作是沿径向剖开并将圆周展为直线的旋转电机,如图 1所示。直线感应电动机的稳态特性近似计算方法基本可以沿用旋转感应电动机的等效电路[1]。 图 1 旋转电机演变为直线电机示意图 对于旋转异步电机而言,与电机绕组交链的磁通主要有两类:一类是穿过气隙的相间互感磁通;另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的。定子各相漏磁通所对应的电感称作定子漏感,由于绕组的对称性,各相漏感值均相等。同样,转子各相漏磁通则对应于转子漏感。 对于每一相绕组来说,它所交链的磁通是互感磁通和漏感磁通之和,因此,定子各相自感为: (1) 转子各相自感为: (2) 两相绕组之间只有互感,互感又分为两类: 1) 定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值; 2) 定子任一相与转子任一相之间的位置是变化的,互感是角位移的函数。 由于三相绕组轴线彼此在空间的相位差为,因此互感为: (3) 于是: (4) (5) 定转子绕组间的互感由于相互间的位置的变化,为: (6) (7) (8) 以上是针对旋转异步电机的参数的推到过程,而对于直线电机,文献[3]中作者给出了圆筒形直线感应电动机的等效电路,如所示: 图 2 圆筒形直线电机的等效电路 图 2中,和分别代表初级绕组的电阻和漏抗;代表励磁电阻;代表励磁电抗;代表次级表面电阻;代表次级表面电抗;代表边端效应影响纵向边电功率产生的损耗折算成的等效电阻;代表在次级铜层中的折算的电阻值。 在该文献[3]中次级使用的是导电层和导磁层所构成的复合材料。至于图 2中的相关参数的计算过程,在该文献中都有详细的说明,不再赘述。 文献[1]中给出了计及边端效应的等效电路,如所示: 图 3 计及边端效应的等效电路 图 3中,为励磁电纳();为初级绕组电阻;为初级绕组漏电抗;为次级导体电阻折算到初级的换算值,为边端效应消耗功率的等效电阻折算到初级的换算值。 2 直线感应电机的数学模型 (1) 电压方程 参看海军工程大学鲁军勇在文献[4]中给出的电压方程,即: (9) 式中:为通电段定子绕组电阻;为通电段定子绕组电阻;为同步速度,为动子实际速度;为微分算子;。 注释: 对上式进行简要的推导: 利用三相静止坐标系到两相任意旋转坐标系间的转换矩阵可将三相静止坐标系下的定子电压方程转换到任意旋转坐标系dq0坐标系下,即: (10) 对于转子电压方程的推导过程类似,只是转子坐标系转换矩阵与定子坐标系的转换矩阵不一样,即: (11) 利用该转换矩阵将转子电压方程由三相静止坐标系转换到两相任意旋转坐标系下,即: (12) 综上,将电压方程归结为: - (13) 考虑角速度与速度间的关系,即: (14) 将式(14)带入到式(13)中可得: (15) 注意: 式(13)中的是电角速度,中的为次级折算的旋转角速度(机械量),折算关系是:,而式(15)中的速度是同步速度(定子磁场的速度),是动子实际的运动速度(机械运动速度)。 (2) 磁链方程 鲁军勇在文献[4]中给出的直线电机的磁链方程为: (16) (3) 电磁推力方程 文献[4]中给出的直线电机电磁推力方程为: (17) 注释: 对上式(17)进行简要的推导: 从电磁功率的角度入手,则: (18) 因此,电磁推力与电磁转矩的关系为: (19) 而我们知道对于旋转异步电机而言,其电磁转矩的表达式为: (20) 结合磁链方程将式(20)中的转子电流分量消掉,则: (21) 将式(21)带入到式(20)中可得: (22) 疑问: 式(17)中的系数如何理解???????? 个人认为应该是转换矩阵的不同带来的这个系数,因为在上面的分析中采用的都是恒功率转换矩阵,而在鲁军勇的文献中所使用的转换矩阵是恒幅值转换矩阵,下面我们验证这种猜测: 由文献[7]可知恒功率转换矩阵和分别为: (23) (24) 恒幅值转换矩阵为: (25) (26) 仍然借助旋转异步电机的电磁转矩来推导电磁推力,将式(25)和(26)带入到文献[7]中给出的电磁转矩表达式中,即: (27) 利用恒幅值转换矩阵将ABC坐标系上的定、转子电流转换到dq0坐标系,即: 由于推导过程相当复杂,但是我们发现在文献[7]中作者指出:在化简过程中的零轴分量完全抵消了,所以对比两种情况的转换矩阵,可做如下的推导: 当使用恒功率转换矩阵时: (28) 当使用恒幅值转换矩阵时: (29) 因此,采用恒幅值转换矩阵运算时的电磁转矩为采用恒功率转换矩阵运算时电磁转矩的1.5倍,即。将其带入到式(19)中可得电磁推力为: (30) (4)运动方程 文献[4]中给出的直线电机在发射阶段的运动方程为: (31) 式中:为负载质量;为动子本体质量;为电磁推力;为风摩系数;为滑动摩擦系数。 注释: 个人认为如果按照式(23)来编写状态方程时,较难列写出速度的状态方程,因为我们知道状态方程的形式为:,考虑是否能将运动方程简化为这种容易列写状态方程的形式,为此,参看文献[5][6]中给出的运动方程的形式,即: (32) 式中:—负载阻力; —机械运动速度; —与速度有关的阻尼系数; 将电磁推力的表达式带入到式(32)中,得: (33) 文献[6]中作者将粘滞阻尼系数取:。 3 状态方程推导 状态方程是指刻画系统输入和状态关系的表达式。状态向量所满足的向量常微分方程称为控制系统的状态方程,状态方程是控制系统数学模型的重要组成部分。 对于线性系统而言,我们知道其状态方程的形式为: (33) 状态变量的选取: 直线电机作为异步电机的一种,同样具有4阶电压方程和1阶运动方程,因此其状态方程也应该是5阶的,因此必须选取5个状态变量[7]。在旋转异步电机中可选的变量共有9个,即转速、4个电流变量、、、和4个磁链变量、、、。个人认为针对直线电机而言,将其中的转速换成速度,另外,转子电流、是不可测的,因此不宜作为状态变量,故只能选择定子电流和,另两个状态变量必须是转子磁链、,或定子磁链、。 为了推导出状态方程,需要结合电压方程(15)和磁链方程,现将两个方程重新列出: 电压方程: (34) 磁链方程: (35) 式(34)中:; 注意到如果采用转子磁链定向,则有,即。由式(35)的第3式可得:。 将磁链方程代入到电压方程中,消去其中的、、、: 由上式的第3、4式可得: 其中:——电机漏磁系数, ——转子电磁时间常数, 将上述推导出的状态方程写成矩阵的形式,则: 上式与式(33)即组成直线电机的状态方程。 从上述的状态方程中可知,状态变量为: (36) 输入变量为: (37) 如果在推导状态方程时使用的是鲁军勇文献[4]中给出的电压方程和磁链方程,则只需对上述的状态方程做如下的修改: 4 S-Function的编写 4.1 S函数的原理 Simulink中的大部分模块都具有一个输入向量、一个输出向量和一个状态向量,如所示: 引入S函数的引入S函数的目的是为了使Simulink有能力构作一般的仿真框图,去处理如下各种系统的仿真:连续系统、离散系统、离散和连续混合系统等。 通常S函数的调用格式为: (38) 其中,为模型文件名,t,x,u分别为当前时间、状态向量,输入向量,而变量flag的值是仿真过程中的状态标志(用它来判断当前是初始化还是运行等),sys输出根据flag的不同而不同,x0是状态变量的初始化,str是保留参数,。 4.2 S函数的m文件 K:\3\asynchronous motor\ays_m_3.m function [sys,x0,str,ts]=asy_m(t,x,u,flag,J,np,Rs,Rr,Ls,Lr,Lm) switch flag case 0 [sys,x0,str,ts]=mdlInitializeSizes; case 1 sys=mdlDerivatives(t,x,u); case 2 sys=mdlUpdata(t,x,u); case 3 sys=mdlOutputs(t,x,u); case 9 sys=mdlTerminate(t,x,u); otherwise error(['Unhandeld flag=',num2str(flag)]); end function [sys,x0,str,ts]=mdlInitializeSizes sizes=simsizes; sizes.NumContStates=5;% 连续状态变量的个数为5 sizes.NumDiscStates=0;% 离散状态变量的个数为0 sizes.NumOutputs=5; %输出变量的个数为5 sizes.NumInputs=4; %输入变量的个数为4 sizes.DirFeedthrough=1;% 直接贯通标志,意思是输入能够直接控制输出 sizes.NumSampleTimes=1;% 采样时间的个数,至少要有一个采样时间 sys=simsizes(sizes); x0=[0,0,0,0,0];%初始化 str=[];%固有格式,预留的 ts=[0 0]; function sys=mdlDerivatives(t,x,u) Rs=6.33;Rr=32.45;Lm=0.06212;Lr=0.08;Ls=0.125;rou=1-Lm*Lm/(Ls*Lr);Tr=Lr/Rr;np=2;J=0.002;Bv=0.02;m=10;M=10;miu=0.05;g=9.8;tao=0.0616; sys(1)=-(Rs*Lr*Lr+Rr*Lm*Lm)/(rou*Ls*Lr*Lr)*x(1)+u(3)*x(2)+Lm/(rou*Ls*Lr*Tr)*x(3)+Lm*x(5)*pi/tao*x(4)/(rou*Ls*Lr)+u(1)/(rou*Ls); sys(2)=-u(3)*x(1)-(Rs*Lr*Lr+Rr*Lm*Lm)/(rou*Ls*Lr*Lr)*x(2)-Lm*x(5)*pi/tao*x(3)/(rou*Ls*Lr)+Lm*x(4)/(rou*Ls*Lr*Tr)+u(2)/(rou*Ls); sys(3)=Lm*x(1)/Tr-x(3)/Tr+x(4)*(u(3)-x(5)*pi/tao); sys(4)=x(2)*Lm/Tr-x(3)*(u(3)-x(5)*pi/tao)-x(4)/Tr; sys(5)=-Bv*x(5)/(m+M)+pi/tao*Lm*(x(3)*x(2)-x(4)*x(1))/(Lr*(m+M))–FL/(M+m); function sys=mdlOutputs(~,x,~) sys=[x(1);x(2);x(3);x(4);x(5)]; function sys=mdlUpdata(t,x,u) sys=[]; function sys=mdlTerminate(t,x,u) sys=[]; 5 直线电机的矢量控制仿真 5.1 仿真模型 直线电机作为异步电机的一种,其动态数学模型同样是一个高阶、非线性、强耦合的多变量系统。虽然通过坐标变换可以使之降阶并简化,但是并没有改变其非线性、多变量的本质[7]。因此,仍然需要采用相应的解耦控制策略来实现直线电机调速系统的高动态性能。目前应用最多的方案有: 1) 按转子磁链定向的矢量控制系统; 2) 按定子磁链控制的直接转矩控制系统; 将仿真模型分成如下几个部分分别单独介绍: (1) 转子磁链观测模型 仿真模型是按转子磁场定向的,因此转子磁链位置的精确观测是控制系统能否实现定子电流转矩分量和励磁分量成功解耦的关键。转子磁链位置的表达式为: (38) 在文献[9]中动子磁链角为: (39) 式中为动子运动的电角频率。 注释: 个人对式(38)和(39)的理解是: 应该是而不是电角频率而不是动子运动的实测角频率。 正因为如此,在实际建模的时候,动子磁链角采用的表达式才改写为: (40) 其中:为感应电机极对数。 当采用转子磁链定向时,满足: (41) 式中:P为微分算子;为定子电流的d轴分量;为动子磁链;为动子时间常数。 实际上,此时的电磁推力的表达式也相应的变为: (42) 此时的转差角速度满足: (43) 式(40)、(41)和(43)构成转子磁链观测模块的主要方程。 从式(43)中可知:转子磁链处在分母的位置上,因此在电机启动的时候,转子磁链为零,则式(43)出现奇异点发散现象,造成仿真错误,因此,可将上式改写为: (44) 可将式(44)中的取为一个很小的常数。 注释: 这样的做法应该是相当于给转子磁链设定了一个初始值,如果我们不采用这种做法,而采用预励磁控制,是否也可以起到这样的作用,有待验证。 图 4 转子磁链观测模块 (2) 励磁电流和转矩电流计算模块 励磁电流和转矩电流的计算表达式为: (45) 内部模块为: 图 5励磁电流和转矩电流计算模块 (3) 电流调节器 由于控制方案中采用的是SVPWM调制方法,其输入量则必须为电压,因此需要将电流转矩分量和励磁分量转换为相应的电压分量,因此需要推导出其数学表达式。 在文献[9]中给出的矢量控制条件下直线感应电机的定子电压方程的表达式为: (46) (47) (48) 因此,按照上述的推导得: (49) 在式(46)中作者指出:该式是在保持定子励磁分量不变的情况下,而观察式(49)可知,还需默认转子磁链恒定,才能得到式(46),但是貌似该式中没有系数,是不是作者推导错误。 通常采用PI调节的方式来求解电压分量,但是文献[9]中给出的式(46)可知,需要采用前馈解耦控制测量对交叉耦合电势进行解耦处理。 其内部模块为: 图 6 电流调节器模块 (4)SVPWM模块 (5)LIM模块 在上文中利用S函数建立了直线电机的数学模型,将其封装成模块,并建立如所示的LIM模块。 图 7 LIM模块 (6)矢量控制模型 初步搭建的仿真模型为: 图 8 矢量控制框图 该模型是初步建立,需要进行如下的修改: A、转子磁链闭环修改成磁链开环 因为计算转子磁链要受到电机本身参数的影响,当这些参数发生变化时,造成磁链估算不准确,但是注意到在转子磁链角即电磁推力计算中都要用到转子磁链,即: (50) B、求解定子电压dq轴分量时是否采用前馈补偿 在图 8中求解定子电压dq轴参量参考值时直接采用了PI调节,未使用前馈补偿,下一步需进行改进。 (7)整体仿真模型 图 9 整体系统控制框图 5.2 仿真结果 图 10 三相电压波形 图 11 电磁推力波形 图 12 动子运动速度波形 参考文献: [1] 叶云岳.直线电机原理与应用[M]. [2] 陈伯时.交流电机变频调速讲座—第六讲:异步电动机的动态数学模型和坐标变换[J]. [3] 贾小龙.三相交流圆筒形直线电动机的研究与设计[D].兰州交通大学硕士学位论文. [4] 鲁军勇.高速长定子直线感应电动机的建模与仿真[J].中国电机工程学报,2008. [5] 朱晓东.永磁直线同步电机矢量控制模型及仿真的研究[J]. [6] 王善华.基于SVPWM的永磁直线同步电机直接推力控制[J]. [7] 陈伯时.电力拖动自动控制系统—运动控制系统[M].机械工业出版社. [8] 仇静.基于PID的直线电机控制方法即实验研究[D]. [9] 李卫超.新型长定子直线感应电机闭环控制测量[J].
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服