收藏 分销(赏)

尼龙纳米复合材料的环境性能研究毕业设计论文.docx

上传人:可**** 文档编号:2436234 上传时间:2024-05-30 格式:DOCX 页数:33 大小:4.22MB
下载 相关 举报
尼龙纳米复合材料的环境性能研究毕业设计论文.docx_第1页
第1页 / 共33页
尼龙纳米复合材料的环境性能研究毕业设计论文.docx_第2页
第2页 / 共33页
尼龙纳米复合材料的环境性能研究毕业设计论文.docx_第3页
第3页 / 共33页
尼龙纳米复合材料的环境性能研究毕业设计论文.docx_第4页
第4页 / 共33页
尼龙纳米复合材料的环境性能研究毕业设计论文.docx_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、河南科技大学毕业论文尼龙纳米复合材料的环境性能研究摘 要尼龙纳米复合材料是由MC尼龙添加纳米填料的方式制备而成。MC尼龙作为工程应用很广泛的塑料,与传统的尼龙6相比,它具有合成工艺简单、机械性能优异等优点。它因具有重量轻、强度高、耐磨等多种独特性能而被广泛应用于机械、石油化工及国防工业等领域,但是MC尼龙在摩擦性能方面仍然存在一些不足。本论文即是对MC尼龙的改性研究,以改善其摩擦学性能。在实验过程中通过加入石蜡/膨胀石墨相变复合材料,制备尼龙纳米复合材料。通过磨损试验机测试其在不同线速度、不同材质环的摩擦学性能。结果表明,加入相变复合材料能明显改善MC尼龙的摩擦学性能,磨损程度提高了50%,摩

2、擦因数提高了75%。在环的线速度方面,对于合金钢环,当环的线速度减小一倍,其耐磨性就增加一倍。钢丝环,当环的线速度减小一倍,其耐磨性就增加55%左右。对于油润滑环而言,当环的线速度改变,材料耐磨性能的变化方面表现不明显,相比同线速度的钢丝环摩擦,油润滑表现出的耐磨性能有很大的提高。关键词:尼龙纳米复合材料,MC尼龙,耐磨性,膨胀石墨,相变复合材料STUDY ON THE ENVIRONMENT PERFORMANCE OF NYLON NANOMETER COMPOSITESABSTRACTNylon nanometer composite material is prepared by th

3、e way of adding nanometer fillers by MC nylon. MC nylon is widely used as a plastic engineering, compared with the traditional nylon 6. It has the advantages of simple synthesis process, excellent mechanical properties, etc. It because of its light weight, high strength, wear and many other unique p

4、roperties and is widely used in machinery, petroleum chemical industry and defense industry and other fields, but MC nylon in wear-resisting properties still exist some problems. This thesis is to study the modification of MC nylon in order to improve its wear-resisting properties. In the process of

5、 the experiment, the nylon nanometer composites were prepared by the addition of paraffin / expanded graphite phase change composites. The wear-resisting properties of different material rings were tested by wear testing machine, and the hardness of the material was tested with the hardness tester.

6、The results show that adding composite phase change materials can significantly improve the wear-resisting properties of MC nylon, increased wear of 50% friction coefficient increases 75%. In terms of the linear velocity of the ring, for alloy steel ring, when the loop line velocity decreases a time

7、s, its wear resistance increases one times. Wire ring, when the ring speed of the wire is reduced, the wear resistance will increase by about 55%. For oily slip ring, ring line speed changes, changes in the resistance of the materials is not obvious and its wear resistance in relatively good state.K

8、EY WORDS: Nylon nanometer composite material ,MC nylon, wear-resisting property, expanded graphite, phase change material目 录第一章 前言31.1尼龙纳米复合材料的介绍31.1.1MC尼龙的概念31.1.2MC尼龙的特点31.1.3MC尼龙的聚合机理及聚合过程中的影响因素31.1.4MC尼龙纳米材料对摩擦接触表面的介绍31.2尼龙纳米复合材料的研究背景、现状及研究意义31.3摩擦学31.3.1摩擦学概况31.3.2摩擦学基本特征31.3.3摩擦磨损的影响因素3第二章 实验部

9、分32.1实验材料、试剂及实验仪器32.1.1实验材料与试剂32.1.2主要实验设备32.3 MC尼龙纳米复合材料的制备32.4性能测试3第三章 结果与讨论3 尼龙纳米复合材料摩擦性能的分析3第四章3结论3参考文献3致谢32929第一章 前言1.1尼龙纳米复合材料的介绍1.1.1MC尼龙的概念MC 尼龙也称铸型尼龙或单体浇铸尼龙,其作为一种应用市场范围很宽广的工程塑料,其分子结构上属于尼龙6,故其性能和特点上也和尼龙6基本类似,不同的是它在较低的温度下快速聚合成型,在分子量和结晶度方面表现较高,因此其在工程应用上的一些性能比尼龙6要好1。MC 尼龙的制备, 它是在常压下,把熔融状态下的己内酰胺

10、C6H11NO加入碱性催化剂与酰化剂共同反应制成待聚单体,然后浇入到一定温度的磨具中,使混合物料很快的进行聚合反应,凝固成坚硬的固体原件,再经过一系列相关工艺的处理,形成预得产物。该尼龙称为单体浇铸尼龙(Monomer Casting Nylon),也称MC尼龙2。MC尼龙在工程应用上作为一种通用热塑性塑料,因其具有很多优良特点,如分子量很大、结晶度较高、工艺流程简单、聚合温度低、机械强度很高、自润滑、减震消音、耐油脂、耐磨耗、耐化学药品、使用温度范围较广等重要性能而在各机械行业得到广泛应用,它可以替代有色金属及其合金,能达到以塑代钢的目的。根据统计数据,从1998年至2005年,国内工程塑料

11、消费年均增长速率为26,预计今后几年的增长率为1518 。从而在众多领域有很好的应用前景。1.1.2MC尼龙的特点与普通尼龙6相比,铸型尼龙生产成本低,工艺简单,不需要复杂的生产设备,模具制作简单。MC尼龙除了具有一般尼龙产品的性能外.还具有工艺简单、聚合温度低、结晶度高、密度小、力学性能好、相对分子质量大且分布均匀、减振耐磨、耐腐蚀、自润滑、使用温度范围宽等明显优点。铸型尼龙相对分子质量在710万左右。铸型尼龙成型制品的尺寸型号不受限制,从理论上讲,只要模具大小允许,制品的尺寸大小也不受限制,而且无方向性,大型的制品可达几百公斤甚至更大的大型尼龙制品。铸型尼龙产品被广泛的用于各种机械仪器零件

12、中,尤其在工程机械中作为耐磨减摩材料代替铜等及其合金,不仅可以节省大量的金属材料,而且其耐磨性比铜好,使用寿命也比铜提升了l4倍,和它相配合的轴磨损情况也极大程度得到提升。近年来,以MC尼龙加工制成的各类产品,相应取代了铜、不锈钢材质和巴氏合金等各类零部件。MC尼龙属于工程塑料,而工程塑料(Engineering Plastics)这个词是杜邦公司在1956年推出聚甲醛(POM)时开始使用的3、9、10。它没有特定的定义,但普遍认为在很多应用领域工程塑料是可以代替金属,能在较长使用时间及较宽温度范围内保持优良性能,且能承受机械应力作用及作为结构材料使用的一类塑料4。MC尼龙作为工程塑料的一个特

13、殊品种,它具有很多的优点5、11:(1) 机械性能良好。MC尼龙制品其特性机械强度大,抗冲击,耐疲劳,韧度好。在其熔点(220)以下MC尼龙的结晶是成型的,其分子量大(高达710万),因此在机械强度方面比一般尼龙(分子量为13万)产品大得多,尤其是其抗蠕变特性非常好,所以能长期支撑轴承的重负载。(2) 具有耐磨性和自润滑性。MC尼龙制品一般在轻负荷、低速度情况下使用时没必要加润滑剂。尼龙的磨损特点是在刚开始使用稍有磨损,以后就很少磨耗,和金属材料不一样,随着使用时间的增加,磨损比例也增加。 (3)噪音较低。铸型尼龙的模量比金属小的多,对振动衰减率要比钢大几十倍,具有吸音作用。因此,用铸型尼龙制

14、作车轮、齿轮时,噪音较小,能有效减弱机械嗓音。(4) 质量轻,铸型尼龙的密度通常在1.151.16,仅是铝合金(2.7)的2/5,钢(7.8)的1/7,铜(8.9)的1/8。由于质轻,在作为机械零件材料使用时可以减少零部件之间不必要的机械强度和动力,也可减小运动惯性,同时装卸和检修也非常方便。(5) 电性质。铸型尼龙在电性能方面与普通尼龙非常相似,和其它工程塑料相比,也没有特别的优势之处,尤其是吸水率的方面,所以在高级电气制品的制作并不合适,然而正因为铸型尼龙拥有吸水性的特点,因此很难带静电,这一因素在塑料中是属于比较特殊的一类。(6)非粘附性。MC尼龙不轻易与其他材料物品粘接,可以作为提升槽

15、斗用途,因此也存在不容易以找到合适粘结剂的缺点。(7) 良好的回弹性。铸型尼龙制品可以使弯曲曲面永久不发生变形,这样就能保持强韧度以抵抗反复不断冲击负荷所产生的断裂。这对于要承受高冲击负荷制件是很有必要的。1.1.3MC尼龙的聚合机理及聚合过程中的影响因素MC尼龙合成过程是属于阴离子型的催化聚合反应,反应过程如下6:(1)己内酰胺阴离子形成过程:在氢氧化钠、金属钠等碱性催化剂作用下,己内酰胺单体反应生成己内酰胺钠盐,在碱性的反应体系里。解离出活性的己内酰胺阴离子。图1-1 己内酰胺阴离子形成(2)链增长过程:己内酰胺阴离子与单体进一步发生开环亲核加成反应,形成活性胺阴离子二聚体,活性胺阴离子二

16、聚体快速与己内酰胺单体发生质子交换,结果又生成酰化二聚体,同时己内酰胺阴离子再次生成。图1-2 己内酰胺的聚合机理酰化二聚体带酰亚胺结构,有非常强的亲电性,成为链的引发中心。故阴离子活性是链增长反应速率的决定因素。(3)平衡反应与结晶过程:由于阴离子聚合反应是在聚合物熔点以下反应,聚合后期反应特征是分子量快速增加的同时伴随着聚合物结晶和凝固现象。通常在反应中,为了使整个聚合反应可以低温(120150)下快速完成,直接以带酰亚胺结构的化合物作为活化剂。同时,可以通过改变聚合单体、添加不同结构的助催化剂或催化剂种类、增强改性剂,在聚合的过程中形成不同结晶形态MC尼龙,从而得到具有不同性能MC尼龙材

17、料。己内酰胺阴离子聚合有两个明显特点13:一、活性中心是N-酰化了的环酰胺键;二、是单体阴离子加到活性链上面,而不是单体加到活性链上。引发剂浓度的决定着活性度和活化单体的浓度,故反应速率取决于碱的浓度大小。又因为质子交换反应很快,增长速率与单体完全无关,只取决于活化单体的浓度。从反应机理可以看出,想要浇出合格尼龙产品,实验时必须要控制好两个重要因素:一是反应温度,包括模具温度和反应器中的原料的温度;二是引发剂和催化剂的浓度。在实际生产过程中,必须根据所需产品结构的不同,制定出适合的浇铸工艺和浇铸方法。MC尼龙的制备是以己内酰胺为原料,颗粒状氢氧化钠作为催化剂,经真空泵脱水反应,生成阴离子,然后

18、再加入助催化剂酰化剂,浇入恒温的模具中使快速聚合反应而成;在多次实验过程发现使用氢氧化钠作为催化剂经常会出现阻聚现象,影响MC尼龙的聚合程度以及MC尼龙板的制备,MC尼龙由于生产周期短,工艺简单,成本较低在聚合及生产过程中存在一定问题。针对这些影响因素要注意一些关键技术问题。(1)阻聚问题真空度的影响。因为MC尼龙的反应是碱催化聚合反应,必须确保在无水的条件下才能进行反应,因此,脱水是否彻底,将决定着聚合反应是否能够顺利进行,如果水不能及时除去,反应方向会逆向进行。这就是反应过程不聚合或聚合不完全的原因。生产过程中出现不聚合现象的表现是聚合速度缓慢,局部不聚合或聚合不完全,还有就是完全不聚合,

19、其主要原因前者是真空度不够,后者原因为假真空。因此生产中必须要保证真空度足够。本实验过程中的真空度不能低于-0.098Mpa。原料己内酰胺的纯度的影响。实验过程所用主要原料己内酰胺含有一定杂质,遇到空气难免含有一些水分,而其中的水分对己内酰胺的聚合影响尤其重要,表现为阻聚作用,因此,使用时必须要把其中水分除掉,故要对熔融的己内酰胺进行抽真空处理,这样可以除去水分。催化剂、助催化剂的影响。加入氢氧化钠时会与己内酰胺反应有水生产,而颗粒状氢氧化钠本身比较容易吸水,一旦反应器中的水不能及时完全除去,就会出现不聚合现象发生,因此需要在加入催化剂之后继续抽真空处理,是水分得到完全除去。目前一些企业已改用

20、新型甲醇钠催化剂7,这样可以有效避免了水的生成,实际生产效果比之前用氢氧化钠作催化剂要好。脱水完全的标志。根据实验过程中积累的经验,下述一些现象标志可作为脱水完全与否的相对判断控制标准:反应器中存在水分时,“气”泡是快速上升的小泡,无水分时,“气”泡是相对缓慢的大泡;有水分时反应器中无碎瓷片碰撞声,完全脱水后反应器中则有碎瓷片碰撞声。(2)减磨耐磨问题 聚酰胺的耐磨性虽然高于其他材料,但是其耐磨性还不能满足实际工矿的需求。特别是在一些死角区出现耐磨性不好磨损率较大的情况。本实验中对于减磨耐磨性的改善的方法是添加石墨石蜡处理。(3)气孔问题。在尼龙浇铸的时候,经常出现或大或小的气孔。气孔的产生与

21、温度有一定的关系,当温度过高时容易产生缩孔。为了减少阻聚,根据温湿度的变化,本实验磨具聚合温度为155-160。在聚合的物料中容易出现混入易挥发或易分解物质,浇铸时产生挥发性物质产生气泡和气孔12。1.1.4MC尼龙纳米材料对摩擦接触表面的介绍由实验制得的MC尼龙纳米复合材料8、14,我们要通过磨损试验机摩擦实验对其耐磨情况的研究,实验通过对摩擦过程中扭矩,接触表面温度,材料内部温度,室温,湿度等数据的记录来分析材料的耐磨情况。转换成摩擦因素和磨损率可以直接明了观察材料的耐磨性。该摩擦实验中我们分别研究了合金环摩擦,钢丝环摩擦,油润滑摩擦。 合金环摩擦:裁好尺寸为30*7*6规格的样块与配合磨

22、损试验机尺寸的合金环进行滚动摩擦。 钢丝环摩擦:裁好尺寸为30*7*6规格的样块与配合磨损试验机尺寸的钢丝环进行滚动摩擦,钢丝环需要特殊加工,缠钢丝等一些工艺。油润滑摩擦:裁好尺寸为30*7*6规格的样块与配合磨损试验机尺寸的钢丝环进行滚动摩擦,然后用滴管加入润滑油,间隔四分钟滴一次,一次58滴。1.2尼龙纳米复合材料的研究背景、现状及研究意义本课题中尼龙纳米复合材料的填充物即为纳米复合材料。纳米材料作为新兴的功能材料,因其特殊的效应和功能而具有广阔的应用前景15。纳米复合材料可以将无机材料的刚性稳定性、易加工性、热稳定性、介电性、韧性完美的结合而且涉及到原子物理、胶体化学、反应动力学表面、界

23、面等多种学科,在实际应用和理论研究中都有极大的研究价值。复合材料是指把两种或者两种以上物质融合在一起,进行优势互补以得到最大的综合性能。而纳米复合材料是指分散相有一维小于100Nm的复合材料,由于纳米分散相比表面大和较强的界面作用,纳米复合材料通常表现出和一般宏观复合材料不同的综合性能16。因此具有许多优点。例如阻隔性能,电学磁学性能。常用于制备仿生材医学材料、高介电材料、耐磨擦磨损材料、敏感材料等。纳米单元制备方法种类有很多,大体可分为化学方法、物理方法、物理化学方法。物理方法有物理气相沉积法(PVD) 、物理粉碎法,化学法为化学气相沉积法(CAD),物理化学方法通常用活性氢-熔融金属法。制

24、备方法中物理粉碎法利用超细磨制备纳米粒子,利用物料与介质间的碰撞与摩擦辅以大功率超声波粉碎,达到物质的微细化。此法较之简便常用,本研究中所用石墨所用此法。随着广泛应用范围的增加,当进行干摩擦时未经改性的尼龙具有较高的摩擦系数,在潮湿环境下吸水能力强,使其力学性能也随着降低, 并存在尺寸稳定性不好、低温韧性较差、弹性模量较高等缺点17。近些年来,国内外在增韧、减摩、抗静电、增强等方面对MC尼龙性能的改进研究比较关注,通过在尼龙铸件中添加增强剂以形成复合材料,其综合性能远超组成它的各单独材料,因此也为尼龙复合材料的研究带来了新的机遇。尼龙改性受关注度非常高,目前国内外对尼龙复合材料的研究也非常多。

25、对尼龙复合材料性能的改性研究,通常是在尼龙的聚合过程中加入填充物。在国外的研究中最成功的是日本丰田公司,其制备了PA/MMT纳米复合材料并将其用于纺丝、薄膜包装材料或制造汽车配件等。但是国内外对于高分子纳米复合材料的聚酰胺复合材料的研究很少,因此本研究课题就具有新颖性和独创性,具备一定的研究价值18、19。1.3摩擦学1.3.1摩擦学概况摩擦学一词派生自希腊字母“Tribes”,意思为“摩擦的科学”,是一个新型的词汇,定义为:“研究作相对运动的相互作用表面及其有关的理论和实践的一门科学技术。”21 1966年2月,英国教育科研部润滑工程工作组在一份报告中22指出,摩擦学一词应当包括摩擦、润滑和

26、磨损等课题,应将过去各领域孤立、分散开展的摩擦、磨损、润滑及其相关科学技术研究综合为摩擦学。自此,摩擦学作为一门学科,在近现代的社会发展历程中很快获得了世人的公认。发展至今日,摩擦学已经成为一门基于材料物理学、化学、数学科学及机械工程等学科基础之上,并与医学、建筑学等其他学科交叉渗透的新的研究科学。1.3.2摩擦学基本特征摩擦力是每当一个物体沿另一个物体滑动时总会受到的运动阻力,若将两物体相互压紧,然后施加一个平行运动方向的切向力,那么引起滑动所需要的切向力就叫做“静摩擦力”,维持滑动的切向力叫做“动摩擦力”,通常情况下,动摩擦力小于静摩擦力。摩擦学两大定律于1699年被提出23,第一定律表明

27、,摩擦力与两接触体之间的表观接触面积无关,而第二定律表明,摩擦力与两物体之间的法向载荷成正比。Coulomb于1785年提出了第三定律,即动摩擦力几乎与滑动速度无关,但此定律的适用范围比前两定律小些。针对以上古典摩擦定律,一代代科研工作者进行了无数次的试验对比验证,对摩擦学的研究也终于是初窥门径,创建了众多适用于不同条件下的摩擦理论,如Bowden和Tabor提出的“粘着摩擦理论”24和“微凸体相互作用理论”等。1.3.3摩擦磨损的影响因素摩擦、磨损现象是一种常见现象,然而摩擦、磨损机理纷繁复杂,影响因素众多,任何一项因素参数的变动都可能导致摩擦、磨损性能的急剧变化。材料的摩擦磨损性能是独立于

28、材料本身物性参数之外的一项特性指标,它不同于硬度、冲击强度、吸水性等隶属于材料的固有属性,而是材料的固有性能与外界条件的综合体现,两者相互影响,若外界条件发生了变化,材料的摩擦与磨损性能也将随之而改变20、25。第二章 实验部分2.1实验材料、试剂及实验仪器2.1.1实验材料与试剂表2-1主要的实验试剂及药品原料名称级别厂家己内酰胺(颗粒)工业级岳阳石化膨胀石墨工业级青岛海达 固体石蜡工业级国药集团化学试剂有限公司氢氧化钠(颗粒)分析纯纯天津市大茂化学试剂厂二甲基硅油分析纯纯天津市风船化学试剂科技有限公司丙酮分析纯烟台市双双化工有限公司无水乙醇分析纯天津市风船化学试剂科技有限公司2.1.2主要

29、实验设备设备型号厂家超声波清洗器KQ3200E型昆山市超声仪器有限公司数显精密增力电动搅拌器JJ1A型金坛市双捷实验仪器厂马弗炉KSW-4D-11沈阳市节能电炉厂精密电子天平BT25S型深圳市科铭达实业有限公司恒温烘箱CN2L-C3(R0型上海精密科学仪器有限司邵氏橡塑硬度计LX-D型莱州精益试验仪器有限公司真空泵2XZ-4浙江黄岩真空泵厂数显磁力搅拌器98-3型郑州凯鹏实验仪器有限公司光学生物显微镜FL-305A江西枫林光学仪器有限公司磨损试验机M-2000宣化试验机厂TES 1384输入温度记录器TES 1384泰仕电子工业股份有限公司红外测温仪GM320广州众宇旺电子科技有限公司表2-2

30、 主要实验设备2.2纳米复合材料的制备石蜡/膨胀石墨相变复合材料的制备(1)实验材料的准备固体石蜡:取熔点为4850的固体石蜡。 膨胀石墨:膨胀石墨的制取是由鳞片石墨通过马弗炉(700800)加热膨胀制取,具体是每次称取0.30.5g鳞片石墨放在坩埚中,然后将坩埚放入事先预热好的马弗炉中,加热时间30s左右取出,待膨胀石墨足够多,将它倒入高速多功能粉碎机中粉碎时间为8min。粉碎好后取出倒入200目的筛中筛好,去筛篮下沉的石墨。(2)材料的制备准备好事先烘干的烧杯,将数显恒温电动搅拌水浴锅中加水至70左右,称取固体石蜡与膨胀石墨比例以2.5:1的配比,总质量为12.5g(固体石蜡10g,膨胀石

31、墨2.5g)放入干燥烧杯中,然后将烧杯放入事先加热好的水浴锅中,是固体石蜡熔化成液体,时间大概20min。待固体石蜡融化好,开启数显恒温电动搅拌水浴锅中的电动搅拌开关搅拌30min,然后取出并迅速用玻璃搅拌棒快速沿一个方向搅拌,目的是防止石墨下沉,使混合物分散不均匀。这样石蜡/膨胀石墨相变复合材料就制备出来了。将复合材料用药勺和玻璃棒捣碎取出放入物料袋备用。2.3 MC尼龙纳米复合材料的制备本研究实验尼龙纳米复合材料制备过程中,相变复合储热材料填充的质量分数分别为5%和10%,现以制备填充物为10%的固体石蜡(4850)/膨胀石墨相变复合材料的尼龙纳米复合材料为例详述其实验步骤:(1)模具的处

32、理准备好扳手,拧转螺丝将模具打开,用铜铲把模具里面的附着物铲干净。然后用蘸有无水乙醇的脱脂棉把模具内部表面擦拭干净(一定要擦拭干净,不然聚合物表面会凹凸不平的),擦拭干净后用,将模具在空气中放置30min使表面残留的无水乙醇挥发。最后在模具内表面涂上一层二甲基硅油以便材料成型时脱模,将模具用螺丝拧紧(注意拧螺丝时先拧对角线的两个,然后在拧另外对角线的两个),放入烘箱,模具要放平且浇注口要朝外方便浇注,烘箱加热至160,恒温保温。(2)药品的称量用电子天平称量己内酰胺90g,用分析天平称量固体石蜡(4850)/膨胀石墨相变复合材料5g。将它们依次加入烘干的三口烧瓶内(注意往三口烧瓶内加原料是小心

33、慢点,防止原料往外掉)。(3)超声仪器超声分散将装有原料的三口烧瓶进行超声分散,首先调节好超声器里面的水温,使其加热到70,然后找个铁架台,把三口烧瓶用铁架台加紧使其固定放入超声器使水没过三口烧瓶。最后开启超声键按钮进行超声处理60min(注意本实验使用的超声器是间隔20定时的)。超声时要将三口烧瓶密封紧,防止水蒸气进入烧瓶内。(4)聚合打开油浴锅开关,将油浴锅加热至140,将三口烧瓶(用干抹布把三口烧瓶底部水擦干净)放入热油浴锅内,将一块磁子放入三口烧瓶内,三口烧瓶两边的口用橡胶塞密封紧,另一口与抽真空装置的冷凝管连接,各接口处都要涂上一层真空脂。旋开磁力搅拌器,转至合适的转速,打开真空泵(

34、打开真空泵前要确保与空气连接的活塞旋到开口处,关闭真空泵前也要先打开旋塞,真空泵注意定时维护,更换里面的机油),140油浴下抽真空并搅拌30min,抽真空期间三口烧瓶内不断有气泡冒出,而且有碎瓶的响声发出,打开旋塞,关闭真空泵。称取0.35g氢氧化钠(注意称取氢氧化钠是要快速,因为氢氧化钠有强吸水性,很容易将空气里的水带入反应器内,阻止聚合反应发生程度),加入到三口烧瓶内,继续抽真空搅拌,这时要密切注意反应装置的变化,防止冷凝管接口处被赌塞(因为己内酰胺的沸点很低,很容易升华附在冷凝管接口处)并在反应过程中用吹风机对着接口处吹,20min后打开旋塞关闭真空泵。(5)浇注反应完成后,用注射器抽取

35、1ml酰化剂(TDI),加入到三口烧瓶内,停留在油浴锅中强力搅拌30s,然后取出用毛巾擦干三口烧瓶底部的油,朝一个方向均匀摇动三口烧瓶约20s(要控制好摇动时间,因为己内酰胺聚合时间快,时间如果控制不好的话,己内酰胺将会在三口烧瓶内聚合,使实验失败。),这是需要两人配合浇注,另一人打开事先预热好防止模具的烘箱,并安装好浇注漏斗,通过漏斗浇注到模具内,使其聚合。烘箱160下保温两小时。(6)脱模 两小时到,关闭烘箱开关停止加热使其自然冷却,待冷却好后将模具取出,准备好卸模具的工具卸模具,取出尼龙纳米复合材料后(放入样品袋,贴上标签备用),用酒精铜铲仔细清洗模具,待模具清洗干净后均匀涂上一层二甲基

36、硅油后装好备用。放入样品袋,贴上标签,备用。2.4性能测试(1)样品的处理将上述实验制备好的各比例样品用锯子裁成尺寸为30*7*6的规格,裁好后用粗细砂纸进行表面打磨,表面打磨的方法是先在粗砂纸下面垫一块玻璃板(确保其接触表面光滑,使实验数据准确),样块打磨是按照8字形状打磨,然后在细砂纸上打磨,同样在其下面也要垫玻璃板。打磨完成后放入标签带封好口,待测。(2)摩擦性能的测试实验选用宣化试验机厂生产的MM-200型摩擦磨损试验机,该型号试验机加载量程为0200公斤,分上下两个试样轴,下试样轴转速分别为200rpm和400rpm,上试样轴转速分别为180rpm和360rpm,将摩擦试样A和摩擦配

37、副B分别固定于上下试样轴,通过调节上下试样轴的转速,可进行各种金属,非金属材料的滑动、滚动、滑动滚动复合摩擦,间歇摩擦等多种形式摩擦试验。将打磨完好的样品通过磨损试验机测试其扭矩,用红外测温仪测试钢环与样品接触面的温度,用热电偶记录样块内部温度,每2min记一下数据。本实验研究的是尼龙纳米复合材料的环境性能适应差异,进行磨损试验时,我们使用了三类接触表面不同的环分别是:合金环、钢丝环,钢丝滴油润滑环。环的类型载荷线速度磨损时间合金钢环(半径20mm)20kg0.86m/s30min合金钢环(半径25mm)20kg1.04m/s30min钢丝环(半径20mm)20kg0.43m/s20min钢丝

38、环(半径20mm)20kg0.86m/s20min钢丝环(半径31mm)20kg0.65m/s20min钢丝环(半径31mm)20kg1.3m/s20min滴油环(半径20mm)20kg0.43m/s20min滴油环(半径20mm)20kg0.86m/s20min滴油环(半径31mm)20kg0.65m/s20min滴油环(半径31mm)20kg1.3m/s20min测试好的扭矩然后通过=F/(RN)式中 F扭矩,kg/cm; R钢环半径,cm; N载荷,kg;计算摩擦系数(摩擦系数取值为摩擦阶段内稳定的平均值)并作图。实验测试完的样块用游标卡尺测量其磨痕宽度,记录数据并做柱状图。最后将测得的

39、数据与纯尼龙样品作对比,结合温度变化情况分析其摩擦学性能。 第三章 结果与讨论 尼龙纳米复合材料摩擦性能的分析(1)GCr15钢环摩擦 图3-1填料添加量和环线速度改变对尼龙复合材料摩擦系数大小的影响上述图3-1中为高速干摩擦试验条件下不同比例含量石蜡/膨胀石墨添加和环的线速度改变量对复合材料摩擦系数随时间的变化趋势的比较。图中六个样块都是在材料受到200N载荷与GCr15材质的合金钢环配副的情况下进行干摩擦试验。它们分别是线速度为0.86m/s纯尼龙、0.86m/s 5%石墨石蜡、0.86m/s 10%石墨石蜡和线速度为1.04m/s纯尼龙、1.04m/s 5%石墨石蜡、1.04m/s 10

40、%石墨石蜡摩擦条件的样块。从上述图中我们可以看出,摩擦因数呈现两大类情况变化趋势到最后都稳定不变。0.86m/s纯尼龙、0.86m/s 5%石墨石蜡和1.04m/s 5%石墨石蜡三者摩擦因数随摩擦时间的增加先增加后减小最后趋于稳定。0.86m/s 10%石墨石蜡、1.04m/s纯尼龙1.04m/s 10%石墨石蜡三者摩擦因数随摩擦进行时间的增加而逐渐增大最后趋于稳定。从上述图中我们可以观察到当环的线速度不变时,无论线速度为0.86m/s还是1.04m/s时,添加了相变纳米材料的样块摩擦因数最后趋于稳定值比纯尼龙要小,说明相变纳米材料的添加对MC尼龙具有明显的减摩作用。同样我们从图从也可以观察出

41、环的线速度对尼龙纳米复合材料的影响,无论是对于5%石墨石蜡还是10%石墨石蜡线速度的改变都会影响摩擦因数的稳定值,当环的线速度从1.04m/s下降到0.86m/s时,尼龙、5%石墨石蜡和10%石墨石蜡三者的摩擦因数下降值约20%25%。因此我们得出如下结论,线速度越小,尼龙纳米复合材料摩擦因数的稳定值就越小。图3-2填料添加量和环线速度改变对尼龙复合材料磨痕宽度大小的影响上述图3-2中为高速干摩擦试验条件下不同比例含量石蜡/膨胀石墨添加和环的线速度改变量对复合材料磨痕宽度随时间的变化趋势的比较。图中六个样块都是在材料受到200N载荷与GCr15材质的合金钢环配副的情况下进行干摩擦试验。它们分别

42、是线速度为0.86m/s纯尼龙、0.86m/s 5%石墨石蜡、0.86m/s 10%石墨石蜡和线速度为1.04m/s纯尼龙、1.04m/s 5%石墨石蜡、1.04m/s 10%石墨石蜡摩擦条件的样块。从上述图中我们可以看出,添加石蜡/膨胀石墨相变复合纳米材料的磨痕宽度相比纯尼龙有所下降,当环的线速度为0.86m/s时,5%石墨石蜡和10%石墨石蜡的磨痕宽度较纯尼龙下降了约20%25% 。而当环的线速度为1.04m/s时,5%石墨石蜡和10%石墨石蜡的磨痕宽度较纯尼龙下降了约两倍,可以看出当环的线速度下降时,添加了石蜡/膨胀石墨相变复合纳米材料的磨痕宽度相比纯尼龙有很大程度的提高。(2)1.2m

43、m缠钢丝环摩擦图3-3填料添加量和环线速度改变对尼龙复合材料摩擦系数大小的影响上述图3-3中为高速干摩擦试验条件下不同比例含量石蜡/膨胀石墨添加和环的线速度改变量对复合材料摩擦系数随时间的变化趋势的比较。图中六个样块都是在材料受到200N载荷与45号钢材质的1.2mm钢丝环配副的情况下进行干摩擦试验。它们分别是线速度为0.43m/s纯尼龙、0.43m/s 5%石墨石蜡、0.43m/s 10%石墨石蜡和线速度为0.86m/s纯尼龙、0.86m/s 5%石墨石蜡、0.86m/s 10%石墨石蜡摩擦条件的样块。从上述图中我们可以看出,摩擦因数呈现两大类情况变化趋势到最后都稳定不变。0.43m/s纯尼

44、龙、0.86m/s纯尼龙和0.43m/s 5%石墨石蜡三者摩擦因数随摩擦时间的增加先减小后缓慢增大最后趋于稳定。0.86m/s 5%石墨石蜡、0.43m/s 10%石墨石蜡和0.86m/s 10%石墨石蜡三者摩擦因数随摩擦进行时间的增加而逐渐减小最后趋于稳定。从上述图中我们可以观察到当环的线速度不变时,无论线速度为0.43m/s还是0.86m/s时,添加了相变纳米材料的样块摩擦因数最后趋于稳定值比纯尼龙要小,说明相变纳米材料的添加对MC尼龙的摩擦性能有明显提高。同样我们从图从也可以观察出环的线速度对尼龙纳米复合材料的影响,无论是对于5%石墨石蜡还是10%石墨石蜡环线速度的改变都会影响摩擦因数的

45、稳定值,线速度越小,尼龙纳米复合材料摩擦因数的稳定越小。对于缠钢丝环而言,当环的线速度从0.86m/s下降到0.43m/s情况时,5%石墨石蜡和10%石墨石蜡摩擦因素的下降值比纯尼龙大很多,5%石墨石蜡和10%石墨石蜡摩擦因素的下降值约为40%50%,纯尼龙变化量不大,因此我们得出如下结论,钢丝环摩擦时,当钢丝环的线速度下降时,5%石墨石蜡和10%石墨石蜡所表现出来的摩擦因数下降值比纯尼龙要明显多,纯尼龙依然维持在一个大的值。图3-4填料添加量和环线速度改变对尼龙复合材料磨痕宽度大小的影响上述图3-4中为高速干摩擦试验条件下不同比例含量石蜡/膨胀石墨添加和环的线速度改变量对复合材料磨痕宽度随时

46、间的变化趋势的比较。图中六个样块都是在材料受到200N载荷与45号钢材质的1.2mm钢丝环配副的情况下进行干摩擦试验。它们分别是线速度为0.43m/s纯尼龙、0.43m/s 5%石墨石蜡、0.43m/s 10%石墨石蜡和线速度为0.86m/s纯尼龙、0.86m/s 5%石墨石蜡、0.86m/s 10%石墨石蜡摩擦条件的样块。从上述图中我们可以看出,添加石蜡/膨胀石墨相变复合纳米材料的磨痕宽度相比纯尼龙有所下降,但下降的不明显。当环的线速度为0.86m/s时,5%石墨石蜡和10%石墨石蜡的磨痕宽度较纯尼龙下降了约10% 。而当环的线速度为0.43m/s时,5%石墨石蜡和10%石墨石蜡的磨痕宽度较

47、纯尼龙下降了也差不多10%,可以看出当环的线速度下降时,添加了石蜡/膨胀石墨相变复合纳米材料的磨痕宽度相比纯尼龙减少的不明显。(3)1.6mm缠钢丝环摩擦图3-5填料添加量和环线速度改变对尼龙复合材料摩擦系数大小的影响上述图3-5中为高速干摩擦试验条件下不同比例含量石蜡/膨胀石墨添加和环的线速度改变量对复合材料摩擦系数随时间的变化趋势的比较。图中六个样块都是在材料受到200N载荷与45号钢材质的1.6mm钢丝环配副的情况下进行干摩擦试验。它们分别是线速度为0.65m/s纯尼龙、0.65m/s 5%石墨石蜡、0.65m/s 10%石墨石蜡和线速度为1.3m/s纯尼龙、1.3m/s 5%石墨石蜡、1.3m/s 10%石墨石蜡摩擦条件的样块。从上述图中我们可以看出,摩擦因数呈现两大类情况变化趋势到最后都稳定不变。0.65m/s纯尼龙、1.3m/s纯尼龙、0.65

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服