资源描述
2022-2023学年六上数学期末模拟试卷
一、仔细填空。
1.把一根3米长的绳子平均截成4小段,每段是全长的(________),每段长(_______)米。
2.东林小学学生参加社团活动情况如图.
(1)参加(_____)社团的人数最多.
(2)参加体育类社团的学生占全校学生的(______)%.
(3)参加艺术类社团的有800人,参加综合实践类社团的学生有(___)人.
(4)参加综合实践类社团与学科类社团的学生人数之比是(_____).
3.工厂加工一批零件,合格的有120个,不合格的有30个,产品的合格率是(____)。
4.把9个桔子平均分成3份,每份是这些桔子的,有 个,其中的2份是这些桔子的,有 个。
5.如果a=2×3×7,b=2×3×3×5,那么a和b的最大公因数是( ),最小公倍数是( )。
6.4个棱长为20厘米的正方体纸盒放在墙角处(如下图),有(_______)个面露在外面,露在外面的面积是(__________).
7.=0.8=( )÷( )=.
8.大圆的半径是4厘米,小圆的直径是4厘米,大圆和小圆的周长比是(________),面积比是(________)。
9.用最小的质数作分子的假分数有(________)。用最小的合数作分母的最简真分数有(________),这些分数的和是(________)。
10.用一块长6cm、宽4cm的长方形纸板,锯成一个最大的圆板,这个圆板的面积是(________)cm2。
二、准确判断。(对的画“√ ”,错的画“×”)
11.一堆煤大约有98%吨。 (_______)
12.在含糖率是的糖水中,放入10克糖和20克水,糖水的含糖率不变。(________)
13.一个正方体的棱长扩大到原来的4倍,它的表面积就扩大到原来的8倍. (____)
14.两个数之和一定不是质数。 (____)
15.表示一个星期的气温变化情况,选用扇形统计图比较合适。 (_____)
16.两个圆柱的体积相等,那么它们的表面积也相等。(______)
三、谨慎选择。(将正确答案的标号填在括号里)
17.下面说法正确的有( )个。
①一个数的因数都比这个数的倍数小。
②如果合唱队中男生人数是女生人数的,那么女生人数占合唱队总人数的。
③50个连续自然数的和一定是奇数。
④如果一个面的半径扩大3倍,那么它的周长扩大3倍,面积扩大9倍。
A.4 B.3 C.2 D.1
18.如下图,图形( )可以看作是一个正方体的表面展开图。
A. B. C.
19.半径是2cm的圆,周长和面积( )。
A.相等 B.周长大 C.面积大 D.数值相等,单位不同
20.小红、小华和小明都是集邮爱好者,小红的邮票与其他两人邮票总数的比是5︰19,若小华送12枚奥运纪念邮票给小红,则他们三人的邮票枚数一样多,他们一共集了( )枚邮票。
A.80 B.96 C.120
21.把一根长1米的圆柱形钢材截成2段后,表面积增加了6. 28平方分米,这根钢材原来的体积是( )
A.31.4立方分米 B.3.14立方分米 C.6.28立方分米
四、细想快算。
22.直接写得数.
+= ﹣= ﹣= 5﹣= 1﹣﹣=
5÷0.001= 2.5×4= += ﹣= ++=
23.计算下面各题,能用简便方法计算的要简便计算。(写出主要过程)
24.看图列式或列方程解答。
25.计算下面图形阴影部分的面积。
五、能写会画。
26.把图A饶点O逆时针旋转90°得到图B,再把图B向右平移4格后得到图C.
27.看下面的立体图形,把从前面、上面和右面看到的样子画出来。
(1)前面 (2)上面 (3)右面
28.先将下图向上平移4格后,再向右平移5格,画出两次平移后的图形。
六、解决问题
29.一个圆形水池的周长是31.4m。现在将这个水池的直径扩大后,水池面积增加了多少平方米?
30.下面的每个长方形都表示1升牛奶,在图中表示出“把3升牛奶平均分给4个小朋友,每个小朋友分得的结果”。
每个小朋友分得3升牛奶的( ),每个小朋友分得( )升牛奶。
31.有一块面积公顷的地,用总面积种蔬菜,种粮食,其余的种果树。种果树的面积占总面积的几分之几?
32.求图中阴影部分的周长和面积。
33.甲、乙两地相距108 km,一辆货车从甲地开往乙地用了2.4h,当货车从乙地返回时,因为是空车,速度提高了20%,从乙地返回甲地需要多长时间?
参考答案
一、仔细填空。
1、 m
【解析】略
2、艺术类 15 500 5:4
【解析】略
3、80
【分析】总共150个零件,120个合格,120除以150得到合格率。
【详解】
【点睛】
合格率、出勤率、发芽率等常见百分率的计算,都是用符合要求的数量除以总数量,结果要表示成百分数。
4、,3,,6
【分析】把这此桔子的个数看作单位“1”,把它平均分成3份,每份是这些桔子的,求每份有多少个,用这些桔子的个数除以平均分成的份数;求2份是多少个,表示2个,即,求2份的个数,用1份的个数乘2。
【详解】1÷3=
9÷3=3(个)
×2=
3×2=6(个)
答:每份是这些桔子的,有3个,其中的2份是这些桔子的,有6个。
故答案为:,3,,6。
【点睛】
此题是考查分数的意义。把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数。求每份的个数,根据平均分除法的意义,用总个数除以平均分成的份数。
5、6 630
【解析】本题考查的是用分解质因数法求最大公因数和最小公倍数,两个数的最大公因数等于这两个数的所有公有质因数的乘积,最小公倍数等于这两个数的公有质因数与独有质因数的乘积。
因为a=2×3×7,b=2×3×3×5,所以a和b的最大公因数是2×3=6,最小公倍数是2×3×7×3×5=630。
6、9 3600平方厘米
【详解】略
7、4;4;5;25
【详解】略
8、2∶1 4∶1
【分析】根据半径=直径÷2,周长=πd,面积=πr2,分别求出大小圆的周长和面积,然后再分别求出比即可。
【详解】3.14×4=12.56(厘米)
3.14×2×4
=6.28×4
=25.12(厘米)
25.12∶12.56=2∶1
大圆和小圆的周长之比是2∶1。
3.14×(4÷2)2
=3.14×22
=12.56(cm2)
3.14×42
=3.14×16
=50.24(cm2)
50.24∶12.56=4∶1
大圆和小圆的面积之比是4∶1。
【点睛】
计算时应先根据公式分别求出,然后根据题意进行比,最后要化成最简整数比。注:实际上两个圆的半径比等于直径比,还等于周长比;面积的比等于两圆的半径平方的比。
9、、 、 1
【分析】分子和分母相等或分子比分母大的分数叫假分数,最小的质数是2;分子比分母小的分数叫真分数,分子和分母互质的分数是最简分数,最小的合数是4,写出左右最简真分数,根据同分母分数的加法,计算求和。
【详解】用最小的质数作分子的假分数有、 。+=1,用最小的合数作分母的最简真分数有、,这些分数的和是1。
【点睛】
本题考查了真分数、假分数、最简分数、质数、合数和分数加法,知识点较多,要综合运用所学知识。
10、12.56
【分析】用长方形纸板锯一个最大的圆板,圆的直径等于长方形的宽,求出圆的半径,根据圆的面积公式计算即可。
【详解】3.14×(4÷2)²
=3.14×4
=12.56(平方厘米)
【点睛】
关键是明确长方形和圆之间的关系,圆的面积=πr²。
二、准确判断。(对的画“√ ”,错的画“×”)
11、×
【详解】略
12、×
【分析】根据糖的质量÷糖水质量×100%=含糖率,单独求出新加入的糖和水的含糖率,与原来含糖率进行比较即可。
【详解】10÷(10+20)×100%
=10÷30×100%
≈0.333×100%
=33.3%
33.3%<50%
含糖率变低了,所以原题说法错误。
【点睛】
本题考查了百分率,××率=要求量(就是××所代表的信息)÷单位“1”的量(总量) ×100%。
13、错误
【解析】4×4=16,它的表面积就扩大到原来的16倍.原题说法错误.
故答案为错误.
正方体的表面积=棱长×棱长×6,正方体表面积扩大的倍数是棱长扩大的倍数的平方倍.
14、✕
【解析】略
15、✕
【解析】略
16、×
【分析】圆柱的表面积:圆柱两个底面的面积和圆柱侧面的面积之和。
圆柱的体积:圆柱所占空间的大小。
S圆柱表=2πr2+πdh
V圆柱=πr2h
【详解】体积取决于底面圆的半径和圆柱的高;而表面积由半径、直径和高决定。数据千变万化,而且还有乘方,即使两个圆柱体积相等,它们的表面积也不一定就相等。
故答案为×。
【点睛】
①从公式看,圆柱的表面积与圆柱的体积没有必然的联系,②从概念理解,表面积是圆柱“表皮”的面积,是度量二维图形的量;体积是度量三维图形的量。二者之间既没有必然的联系,也不存在某种数量关系。
三、谨慎选择。(将正确答案的标号填在括号里)
17、B
【分析】一个数最大的因数=最小的倍数=这个数本身;
将女生人数看作单位“1”,男生人数为女生人数的,则总人数为女生人数的1+,求女生人数占合唱队总人数的,用单位“1”除以总人数所占分率即可;
根据偶数±偶数=偶数、奇数±奇数=偶数、偶数±奇数=奇数解答即可;
根据圆的周长、面积公式判断即可。
【详解】①一个数最大的因数=最小的倍数=这个数本身,原说法错误;
②1÷(1+)=,原说法正确;
③50个连续自然数中有25个奇数、25个偶数
25个奇数相加=奇数
25个偶数相加=偶数
所以,它们的和是:奇数+偶数=奇数,原说法正确;
④由圆的周长公式C=2πr、面积公式S=πr2,可知:如果一个面的半径扩大3倍,那么它的周长扩大3倍,面积扩大9倍。原说法正确;
故答案为:B
【点睛】
本题考查知识点有因数倍数、奇偶数的运算性质、求一个数占另一个数的几分之几、圆的周长面积。
18、A
【详解】略
19、D
【分析】根据圆的周长=和圆的面积=分别求出圆的周长和面积即可解答。
【详解】周长:3.14×2×2
=6.28×2
=12.56(cm)
面积:3.14×2=12.56(cm)
故答案为:D
【点睛】
此题主要考查学生对圆周长和面积公式的实际应用,要懂得周长和面积单位不同。
20、B
【分析】将总的邮票数看成单位“1”,分配完以后因为三个人邮票一样多,所以每人有的邮票数。
由题可知,12枚邮票占三人邮票总数的,要求总的邮票数用除法计算即可。
【详解】12÷
=12÷
=12÷
=12÷
=12×
=96(枚)
故答案为:96
【点睛】
本题考查分数的四则混合运算实际应用,关键是找到12所对应的分率。
21、A
【解析】把一个圆木截成2段,增加2个底面积为6.28平方分米,则一个底面积为3.14平方分米,高为1米=10分米,圆柱的体积=底面积×高=3.14×10=31.4立方分米。
四、细想快算。
22、+=, ﹣=, ﹣=, 5﹣=4.75, 1﹣﹣=0,
5÷0.001=5000, 2.5×4=10, +=, ﹣=, ++=1.
【解析】试题分析:根据分数和小数加减乘除法的计算方法进行计算即可.
解:
+=, ﹣=, ﹣=, 5﹣=4.75, 1﹣﹣=0,
5÷0.001=5000, 2.5×4=10, +=, ﹣=, ++=1.
【点评】口算时.注意运算符号和数据,然后再进一步计算即可.
23、;;12;
【分析】第一题将÷转化成×,再利用乘法分配律进行简算即可;
第二题先计算小括号里面的加法,再计算中括号里面的乘法,最后计算除法;
第三题利用乘法分配律进行简算即可;
第四题先计算小括号里面的加法,再计算中括号里面的乘法,最后计算除法。
【详解】
=
=
=;
=
=
=;
=36×+36×-36×
=18+24-30
=12;
=
=
=
24、36千克
【分析】根据题意,香蕉是苹果的 ,苹果质量×是香蕉的质量,梨是香蕉的,香蕉的质量×就是梨的质量,据此列式解答。
【详解】120××
=72×
=36(千克)
25、50.24m2; 78.5cm2
【分析】把第一个正方形的阴影部分通过旋转和平移到第二个正方形上边的空白处,阴影部分是一个扇形,据此求出扇形的面积;
直径为20cm半圆的面积-直径为10cm圆的面积即为阴影部分的面积。
【详解】×3.14×82
=3.14×16
=50.24(m2);
3.14×(20÷2)2÷2-3.14×(10÷2)2
=3.14×50-3.14×25
=78.5(cm2)
【点睛】
灵活运用圆的面积公式是解答此题的关键。
五、能写会画。
26、
【解析】略
27、
【解析】略
28、
【分析】把此图的5个顶点先向上平移4格,再向右平移5格,描出这个五个点,然后将各点按原图顺次连接起来。
【详解】
【点睛】
掌握平移的方法和平移图形的画法是解决此题的关键。把图形的各个顶点按照指定的方向和格数平移到新的位置,再把各点按原图连接起来。
六、解决问题
29、75.36平方米
【分析】根据圆的周长公式先求出水池直径,将直径看作单位“1”,直径扩大后占1+,用直径×扩大后的对应分率,求出扩大后的直径,水池增加的面积是一个圆环,根据圆环面积公式计算即可。
【详解】31.4÷3.14=10(米)
10×(1+)
=10×
=14(米)
14÷2=7(米)
10÷2=5(米)
3.14×(7²-5²)
=3.14×24
=75.36(平方米)
答:水池面积增加了75.36平方米。
【点睛】
关键是掌握圆的周长和圆环面积公式,先求出扩大后的直径,圆环面积=π(R²-r²)。
30、,,
【解析】画图时要明确每个大长方形表示1升牛奶。
31、
【分析】把这块地的总面积看成单位“1”,用总面积1减去种蔬菜的分率,再减去种粮食的分率,剩下的就是种果树的面积占总面积的几分之几。
【详解】1﹣﹣,
=-,
=;
答:种果树的面积占总面积的。
【点睛】
本题的关键是要注意“”这一条件是多余的条件,不要混淆。
32、周长:cm
面积:6平方厘米
【解析】周长:2(cm)
面积:6(平方厘米)
33、2h
【详解】108÷2.4×(1+20%)=54(km/h)
108÷54=2(h)
展开阅读全文